253edo
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author Osmiorisbendi and made on 2011-05-19 17:27:47 UTC.
- The original revision id was 230140130.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
=<span style="color: #630080; font-size: 113%;">253 tone equal temperament</span>= //253edo// divides the octave into 253 steps of 4.743083 cents. It approximates the fifth by **148\253**, which is 701.976285 Cents, a **0.004487 Cents sharp**. The primes from 5 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit [[Schismatic family|sesquiquartififths]] temperament. __**253 tone equal modes**__ 63 32 63 63 32: [[3L 2s]] MOS ([[Sub-diatonic]] Tuning) 43 43 19 43 43 43 19: [[5L 2s]] MOS ([[Pythagoric]] Tuning) 41 41 24 41 41 41 24: [[5L 2s]] MOS ([[Meantonic]] Tuning) 35 35 35 35 35 35 35 8: [[7L 1s]] MOS (Perfect [[Porcupine-8]] Tuning [Octal Monatonic scale]) 33 33 33 11 33 33 33 33 11: [[7L 2s]] MOS ([[Armodue-Hornbostel]] Tuning) 31 31 31 18 31 31 31 31 18: [[7L 2s]] MOS ([[Armodue-Mesotonic]] Tuning) 26 26 15 26 26 26 15 26 26 26 15: [[8L 3s]] MOS ([[sensi11|Sensi-11]] [or Undecimal Triatonic]) 20 20 20 11 20 20 20 20 11 20 20 20 20 11: [[11L 3s]] MOS [[[WITNOTS]] Tuning (Tetradecimal Triatonic scale)]
Original HTML content:
<html><head><title>253edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="x253 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #630080; font-size: 113%;">253 tone equal temperament</span></h1> <br /> <em>253edo</em> divides the octave into 253 steps of 4.743083 cents. It approximates the fifth by <strong>148\253</strong>, which is 701.976285 Cents, a <strong>0.004487 Cents sharp</strong>. The primes from 5 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit <a class="wiki_link" href="/Schismatic%20family">sesquiquartififths</a> temperament.<br /> <br /> <u><strong>253 tone equal modes</strong></u><br /> 63 32 63 63 32: <a class="wiki_link" href="/3L%202s">3L 2s</a> MOS (<a class="wiki_link" href="/Sub-diatonic">Sub-diatonic</a> Tuning)<br /> 43 43 19 43 43 43 19: <a class="wiki_link" href="/5L%202s">5L 2s</a> MOS (<a class="wiki_link" href="/Pythagoric">Pythagoric</a> Tuning)<br /> 41 41 24 41 41 41 24: <a class="wiki_link" href="/5L%202s">5L 2s</a> MOS (<a class="wiki_link" href="/Meantonic">Meantonic</a> Tuning)<br /> 35 35 35 35 35 35 35 8: <a class="wiki_link" href="/7L%201s">7L 1s</a> MOS (Perfect <a class="wiki_link" href="/Porcupine-8">Porcupine-8</a> Tuning [Octal Monatonic scale])<br /> 33 33 33 11 33 33 33 33 11: <a class="wiki_link" href="/7L%202s">7L 2s</a> MOS (<a class="wiki_link" href="/Armodue-Hornbostel">Armodue-Hornbostel</a> Tuning)<br /> 31 31 31 18 31 31 31 31 18: <a class="wiki_link" href="/7L%202s">7L 2s</a> MOS (<a class="wiki_link" href="/Armodue-Mesotonic">Armodue-Mesotonic</a> Tuning)<br /> 26 26 15 26 26 26 15 26 26 26 15: <a class="wiki_link" href="/8L%203s">8L 3s</a> MOS (<a class="wiki_link" href="/sensi11">Sensi-11</a> [or Undecimal Triatonic])<br /> 20 20 20 11 20 20 20 20 11 20 20 20 20 11: <a class="wiki_link" href="/11L%203s">11L 3s</a> MOS [<a class="wiki_link" href="/WITNOTS">WITNOTS</a> Tuning (Tetradecimal Triatonic scale)]</body></html>