2460edo
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2011-06-14 15:06:02 UTC.
- The original revision id was 236640090.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
The 2460 equal division divides the octave into 2460 equal parts of 0.4878 cents each. It has been used in [[Sagittal notation]] to define the "olympian level" of JI notation, and has been proposed as the basis for a unit, the [[mina]], which could be used in place of the [[cent]]. It is uniquely consistent through to the 27-limit, which is not very remarkable in itself (388edo is the first such system), but what is remarkable is the degree of accuracy to which it represents the 27-limit intervals. As a micro (or nano) temperament, it is a landscape system in the 7-limit, tempering out 250047/250000, and in the 11-limit it tempers out 9801/9800. Beyond that, 10648/10647 in the 13-limit, 12376/12375 in the 17-limit, 5929/5928 and 6860/6859 in the 19-limit and 8281/8280 in the 23-limit.
Original HTML content:
<html><head><title>2460edo</title></head><body>The 2460 equal division divides the octave into 2460 equal parts of 0.4878 cents each. It has been used in <a class="wiki_link" href="/Sagittal%20notation">Sagittal notation</a> to define the "olympian level" of JI notation, and has been proposed as the basis for a unit, the <a class="wiki_link" href="/mina">mina</a>, which could be used in place of the <a class="wiki_link" href="/cent">cent</a>. It is uniquely consistent through to the 27-limit, which is not very remarkable in itself (388edo is the first such system), but what is remarkable is the degree of accuracy to which it represents the 27-limit intervals.<br /> <br /> As a micro (or nano) temperament, it is a landscape system in the 7-limit, tempering out 250047/250000, and in the 11-limit it tempers out 9801/9800. Beyond that, 10648/10647 in the 13-limit, 12376/12375 in the 17-limit, 5929/5928 and 6860/6859 in the 19-limit and 8281/8280 in the 23-limit.</body></html>