Tenney–Euclidean metrics
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2010-11-02 18:06:19 UTC.
- The original revision id was 175849481.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
==The weighting matrix== Let us define the val weighting matrix W to be the diagonal matrix with values 1, 1/log2(3), 1/log2(5) ... 1/log2(p) along the diagonal. Given a val "a" expressed as a row vector, the corresponding vector in weighted coordinates is aW, with transpose Wa* where the * denotes the transpose. Then the dot product of weighted vals is aW^Wa*, which makes the Euclidean metric on vals, a measure of complexity, to be || <a2 a3 ... ap| || = sqrt(a2^2 + a3^2/log2(3)^2 + ... + ap^2/log2(p)^2). Similarly, if b is a monzo, then in weighted coordinates the monzo becomes bW^(-1), and the dot product is bW^(-2)b*, leading to sqrt(b2^2 + log2(3)^2b3^2 + ... + log2(p)^2bp^2) as the norm on monzos, a measure of complexity we may call the Tenney-Euclidean, or TE, complexity. ==Temperamental complexity== Suppose now A is a matrix whose rows are vals defining a p-limit regular temperament. Then the corresponding weighted matrix is V = AW. The [[Tenney-Euclidean tuning|TE]] tuning projection matrix is then V`V, where V` is the [[Tenney-Euclidean Tuning|pseudoinverse]]. If the rows of V (or equivalently, A) are linearly independent, then we have V` = V*(VV*)^(-1), where V* denotes the transpose. In terms of vals, the tuning projection matrix is P = V`V = V*(VV*)^(-1)V = WA*(AW^2A*)^(-1)AW. P is a [[http://en.wikipedia.org/wiki/Positive-definite_matrix|positive semidefinite matrix]], so it defines a [[http://en.wikipedia.org/wiki/Definite_bilinear_form|positive semidefinite bilinear form]]. In terms of weighted monzos m1 and m2, m1Pm2* defines the semidefinite form on weighted monzos, and hence b1W^(-1)PW^(-1)b2* defines a semidefinite form on unweighted monzos, in terms of the matrix W^(-1)WA*(AW^2A*)^(-1)AWW^(-1) = A*(AW^2A*)^(-1)A = **P**. From the semidefinite form we obtain an associated [[http://en.wikipedia.org/wiki/Definite_quadratic_form|semidefinite quadratic form]] b**P**b* and from this the [[http://en.wikipedia.org/wiki/Norm_%28mathematics%29|seminorm]] sqrt(b**P**b*). It may be noted that (VV*)^(-1) = (AW^2A*)^(-1) is the inverse of the [[http://en.wikipedia.org/wiki/Gramian_matrix|Gram matrix]] used to compute [[Tenney-Euclidean temperament measures|TE complexity]], and hence is the corresponding Gram matrix for the dual space. Hence **P** represents a change of basis defined by the mapping given by the vals combined with an [[http://en.wikipedia.org/wiki/Inner_product_space|inner product]] on the result. Given a monzo b, bA* represents the tempered interval corresponding to b in a basis defined by the mapping A, and //P// = (AW^2A*)^(-1) defines a positive-definite quadratic form, and hence a norm, on the tempered interval space with basis defined by A. Denoting the temperament-defined, or temperamental, seminorm by T(x), the subspace of interval space such that T(x) = 0 contains a sublattice of the lattice of monzos consisting of the commas of the temperament. The [[http://en.wikipedia.org/wiki/Quotient_space_%28linear_algebra%29|quotient space]] of the full vector space by the commatic subspace such that T(x) = 0 is now a [[http://en.wikipedia.org/wiki/Normed_vector_space|normed vector space]] with norm given by T, in which the intervals of the regular temperament define a lattice. The norm T on these lattice points is the //temperamental norm// or //temperamental complexity// of the intervals of the regular temperament; in terms of the basis defined by A, it is sqrt(t//P//t) where t is the image of a monzo b by t = bA* ==OE complexity== Instead of starting from a matrix of vals, we may start from a matrix of monzos. If B is a matrix with rows of monzos spanning the commas of a regular temperament, then M = BW^(-1) is the corresponding weighted matrix. Q = M`M is a projection matrix dual to P = I-Q, where I is the identity matrix, and P is the same symmetric matrix as in the previous section. If the rows define a basis for the commas of the temperament, and are therefor linearly independent, then P = I - M*(MM*)^(-1)M = I - W^(-1)B*(BW^(-2)B*)^(-1)BW^(-1), and mPm* = bW^(-1)PW^(-1)b*, or b(W^(-2) - W^(-2)B*(BW^(-2)B*)^(-1)BW^(-2))b*, so that the terms inside the parenthesis define a formula for **P** in terms of the matrix of monzos B. To define the OE, or octave equivalent seminorm, we simply add a row |1 0 0 ... 0> representing 2 to the matrix B. An alternative proceedure is to find the [[normal lists|normal val list]], and remove the first val from the list, corresponding to the octave or some fraction thereof, and proceed as in the previous section on temperamental complexity. For example, consider marvel temperament, tempering out 225/224. If we add a row for 2, we get [|1 0 0 0>, |-5 2 2 -1>]. If we denote log2 of the odd primes by p3, p5, p7 etc, then the monzo weighting of this matrix is M = [|1 0 0 0>, |-5 2p3 2p5 -p7>], and P = I - M`M = [|1 0 0 0>, |0 4p5^2+p7^2 -4p3p5 2p3p7>/H, |0 -4p3p5 4p3^2+p7^2 2p5p7>/H, |0 2p3p7 2p5p7 4(p3^2+p5^2)>/H], where H = 4p3^2+4p5^2+p7^2. On the other hand, we may start from the normal val list for the temperament, which is [<1 0 0 -5|, <0 1 0 2|, <0 0 1 2|]. Removing the first row gives [<0 1 0 2|, <0 0 1 2], and val weighting this gives C = [<0 1/p3 0 2/p7|, <0 0 1/p5 2/p7|]. Then P = C`C is precisely the same matrix we obtained before. Octaves are now projected to the origin as well as commas. We can as before form the quotient space with respect to the seminorm, and obtain a normed space in which octave-equivalent interval classes of the intervals of the temperament are the lattice points. This seminorm applied to monzos gives the OE complexity. If we start from a normal val list and remove the first val, the remaining vals map to the octave classes of the notes of the temperament. If we call this reduced list of vals R, then the inner product on note classes in this basis is defined by the symmetric matrix S = (RW^2R*)^(-1). Using the marvel example just considered, we obtain S = [[p3^2(4p5^2+p7^2) -4p3^2p5^2], [-4p3^2p5^2 p5^2(4p3^2+p7^2)]]/H. If k = [a b] is a note class of marvel in the coordinates defined by the truncated val list R, which in this case has a basis corresponding to tempered 3 and 5, then sqrt(kSk*) gives the OE complexity of the note class.
Original HTML content:
<html><head><title>Tenney-Euclidean metrics</title></head><body><!-- ws:start:WikiTextHeadingRule:0:<h2> --><h2 id="toc0"><a name="x-The weighting matrix"></a><!-- ws:end:WikiTextHeadingRule:0 -->The weighting matrix</h2> Let us define the val weighting matrix W to be the diagonal matrix with values 1, 1/log2(3), 1/log2(5) ... 1/log2(p) along the diagonal. Given a val "a" expressed as a row vector, the corresponding vector in weighted coordinates is aW, with transpose Wa* where the * denotes the transpose. Then the dot product of weighted vals is aW^Wa*, which makes the Euclidean metric on vals, a measure of complexity, to be || <a2 a3 ... ap| || = sqrt(a2^2 + a3^2/log2(3)^2 + ... + ap^2/log2(p)^2). Similarly, if b is a monzo, then in weighted coordinates the monzo becomes bW^(-1), and the dot product is bW^(-2)b*, leading to sqrt(b2^2 + log2(3)^2b3^2 + ... + log2(p)^2bp^2) as the norm on monzos, a measure of complexity we may call the Tenney-Euclidean, or TE, complexity.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h2> --><h2 id="toc1"><a name="x-Temperamental complexity"></a><!-- ws:end:WikiTextHeadingRule:2 -->Temperamental complexity</h2> Suppose now A is a matrix whose rows are vals defining a p-limit regular temperament. Then the corresponding weighted matrix is V = AW. The <a class="wiki_link" href="/Tenney-Euclidean%20tuning">TE</a> tuning projection matrix is then V`V, where V` is the <a class="wiki_link" href="/Tenney-Euclidean%20Tuning">pseudoinverse</a>. If the rows of V (or equivalently, A) are linearly independent, then we have V` = V*(VV*)^(-1), where V* denotes the transpose. In terms of vals, the tuning projection matrix is P = V`V = V*(VV*)^(-1)V = WA*(AW^2A*)^(-1)AW. P is a <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Positive-definite_matrix" rel="nofollow">positive semidefinite matrix</a>, so it defines a <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Definite_bilinear_form" rel="nofollow">positive semidefinite bilinear form</a>. In terms of weighted monzos m1 and m2, m1Pm2* defines the semidefinite form on weighted monzos, and hence b1W^(-1)PW^(-1)b2* defines a semidefinite form on unweighted monzos, in terms of the matrix W^(-1)WA*(AW^2A*)^(-1)AWW^(-1) = A*(AW^2A*)^(-1)A = <strong>P</strong>. From the semidefinite form we obtain an associated <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Definite_quadratic_form" rel="nofollow">semidefinite quadratic form</a> b<strong>P</strong>b* and from this the <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Norm_%28mathematics%29" rel="nofollow">seminorm</a> sqrt(b<strong>P</strong>b*). <br /> <br /> It may be noted that (VV*)^(-1) = (AW^2A*)^(-1) is the inverse of the <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Gramian_matrix" rel="nofollow">Gram matrix</a> used to compute <a class="wiki_link" href="/Tenney-Euclidean%20temperament%20measures">TE complexity</a>, and hence is the corresponding Gram matrix for the dual space. Hence <strong>P</strong> represents a change of basis defined by the mapping given by the vals combined with an <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Inner_product_space" rel="nofollow">inner product</a> on the result. Given a monzo b, bA* represents the tempered interval corresponding to b in a basis defined by the mapping A, and <em>P</em> = (AW^2A*)^(-1) defines a positive-definite quadratic form, and hence a norm, on the tempered interval space with basis defined by A.<br /> <br /> Denoting the temperament-defined, or temperamental, seminorm by T(x), the subspace of interval space such that T(x) = 0 contains a sublattice of the lattice of monzos consisting of the commas of the temperament. The <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Quotient_space_%28linear_algebra%29" rel="nofollow">quotient space</a> of the full vector space by the commatic subspace such that T(x) = 0 is now a <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Normed_vector_space" rel="nofollow">normed vector space</a> with norm given by T, in which the intervals of the regular temperament define a lattice. The norm T on these lattice points is the <em>temperamental norm</em> or <em>temperamental complexity</em> of the intervals of the regular temperament; in terms of the basis defined by A, it is sqrt(t<em>P</em>t) where t is the image of a monzo b by t = bA*<br /> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h2> --><h2 id="toc2"><a name="x-OE complexity"></a><!-- ws:end:WikiTextHeadingRule:4 -->OE complexity</h2> Instead of starting from a matrix of vals, we may start from a matrix of monzos. If B is a matrix with rows of monzos spanning the commas of a regular temperament, then M = BW^(-1) is the corresponding weighted matrix. Q = M`M is a projection matrix dual to P = I-Q, where I is the identity matrix, and P is the same symmetric matrix as in the previous section. If the rows define a basis for the commas of the temperament, and are therefor linearly independent, then P = I - M*(MM*)^(-1)M = I - W^(-1)B*(BW^(-2)B*)^(-1)BW^(-1), and mPm* = bW^(-1)PW^(-1)b*, or b(W^(-2) - W^(-2)B*(BW^(-2)B*)^(-1)BW^(-2))b*, so that the terms inside the parenthesis define a formula for <strong>P</strong> in terms of the matrix of monzos B.<br /> <br /> To define the OE, or octave equivalent seminorm, we simply add a row |1 0 0 ... 0> representing 2 to the matrix B. An alternative proceedure is to find the <a class="wiki_link" href="/normal%20lists">normal val list</a>, and remove the first val from the list, corresponding to the octave or some fraction thereof, and proceed as in the previous section on temperamental complexity.<br /> <br /> For example, consider marvel temperament, tempering out 225/224. If we add a row for 2, we get [|1 0 0 0>, |-5 2 2 -1>]. If we denote log2 of the odd primes by p3, p5, p7 etc, then the monzo weighting of this matrix is M = [|1 0 0 0>, |-5 2p3 2p5 -p7>], and P = I - M`M = [|1 0 0 0>, |0 4p5^2+p7^2 -4p3p5 2p3p7>/H, <br /> |0 -4p3p5 4p3^2+p7^2 2p5p7>/H, |0 2p3p7 2p5p7 4(p3^2+p5^2)>/H], where H = 4p3^2+4p5^2+p7^2. On the other hand, we may start from the normal val list for the temperament, which is [<1 0 0 -5|, <0 1 0 2|, <0 0 1 2|]. Removing the first row gives [<0 1 0 2|, <0 0 1 2], and val weighting this gives C = [<0 1/p3 0 2/p7|, <0 0 1/p5 2/p7|]. Then P = C`C is precisely the same matrix we obtained before.<br /> <br /> Octaves are now projected to the origin as well as commas. We can as before form the quotient space with respect to the seminorm, and obtain a normed space in which octave-equivalent interval classes of the intervals of the temperament are the lattice points. This seminorm applied to monzos gives the OE complexity.<br /> <br /> If we start from a normal val list and remove the first val, the remaining vals map to the octave classes of the notes of the temperament. If we call this reduced list of vals R, then the inner product on note classes in this basis is defined by the symmetric matrix S = (RW^2R*)^(-1). Using the marvel example just considered, we obtain S = [[p3^2(4p5^2+p7^2) -4p3^2p5^2], [-4p3^2p5^2 p5^2(4p3^2+p7^2)]]/H. If k = [a b] is a note class of marvel in the coordinates defined by the truncated val list R, which in this case has a basis corresponding to tempered 3 and 5, then sqrt(kSk*) gives the OE complexity of the note class.</body></html>