Orwell
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author hstraub and made on 2015-03-10 15:53:53 UTC.
- The original revision id was 543648598.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
<span style="text-align: right; display: block;">Other languages: Deutsch </span> [[toc|flat]] =Properties= [[Semicomma family#Seven%20limit%20children-Orwell|Orwell]] — so named because 19 steps of [[84edo]], or 19\84, is a possible generator — is an excellent 7-limit temperament and an amazing (because of the low complexity of 11) 11-limit temperament. The "perfect twelfth" 3/1 is divided into 7 equal steps. One of these steps represents 7/6; three represent 8/5. It's a member of the [[Semicomma family]]. Alternately, the "fifth harmonic" 5/1 divided into 3 equal steps also makes a good orwell generator, being ~12/7. In the 11 limit, two generators are equated to 11/8 (meaning 99/98 is tempered out). This means that three stacked generators makes the [[orwell tetrad]] 1/1-7/6-11/8-8/5, a chord in which every interval is a (tempered) 11-limit consonance. Other such chords in orwell are the [[keenanismic chords|keenanismic tetrads]] and the [[swetismic chords]]. Compatible equal temperaments include [[22edo]], [[31edo]], [[53edo]], and [[84edo]]. Orwell is in better tune in lower limits than higher ones; the [[optimal patent val]] is [[296edo]] in the 5-limit, [[137edo]] in the 7-limit, and [[53edo]] in the 11-limit. It tempers out the semicomma in the 5-limit, and so belongs to the [[semicomma family]]. In the 7-limit it tempers out 225/224, 1728/1715, 2430/2401 and 6144/6125 in the 7-limit, and 99/98, 121/120, 176/175, 385/384 and 540/539 in the 11-limit. By adding 275/273 to the list of commas it can be extended to the 13-limit as [[Semicomma family#Orwell-13-limit|tridecimal orwell]], and by adding instead 66/65, [[Semicomma family#Winston|winston temperament]]. =Interval chain= ||~ Generators ||~ Cents* ||~ 11-limit ratios (orwell mapping) ||~ 13-limit ratios (orwell mapping) ||~ 13-limit ratios (winston mapping) ||~ 13-limit ratios (blair mapping) || || 0 ||> 0.00 ||< 1/1 || || || || || 1 ||> 271.43 ||< 7/6 || || || 13/11, 15/13 || || 2 ||> 542.85 ||< 11/8, 15/11 || || 18/13 || 35/26, 39/28 || || 3 ||> 814.28 ||< 8/5 || || 21/13, 52/33 || 13/8 || || 4 ||> 1085.71 ||< 15/8, 28/15 || || 13/7 || 24/13 || || 5 ||> 157.13 ||< 12/11, 11/10, 35/32 || || 13/12 || 14/13 || || 6 ||> 428.56 ||< 14/11, 9/7, 32/25 || || || 13/10, 33/26 || || 7 ||> 699.98 ||< 3/2 || || 52/35 || || || 8 ||> 971.41 ||< 7/4 || || 26/15 || || || 9 ||> 42.84 ||< 49/48, 36/35, 33/32 || 40/39 || 27/26 || 26/25 || || 10 ||> 314.26 ||< 6/5 || || 13/11 || 39/32 || || 11 ||> 585.69 ||< 7/5 || || 39/28 || 18/13 || || 12 ||> 857.12 ||< 18/11 || 64/39 || 13/8 || 21/13 || || 13 ||> 1128.54 ||< 21/11, 27/14, 48/25 || 25/13 || || 39/20 || || 14 ||> 199.97 ||< 9/8, 28/25 || || || || || 15 ||> 471.40 ||< 21/16 || || 13/10 || || || 16 ||> 742.82 ||< 49/32, 54/35 || 20/13 || || || || 17 ||> 1014.25 ||< 9/5 || || || || || 18 ||> 85.67 ||< 21/20 || || 26/25 || 27/26 || || 19 ||> 357.10 ||< 27/22, 49/40 || 16/13 || 39/32 || || || 20 ||> 628.52 || 36/25 || 56/39 || || || || 21 ||> 899.95 || 27/16, 42/25 || 22/13 || || || || 22 ||> 1171.38 || 63/32 || || 39/20 || || *in 11-limit POTE tuning =Spectrum of Orwell Tunings by Eigenmonzos= ||~ Eigenmonzo ||~ Subminor Third || || 7/6 || 266.871 || || 14/11 || 269.585 || || 12/11 || 270.127 || || 11/9 || 271.049 || || 8/7 || 271.103 || || 7/5 || 271.137 (7 and 11 limit minimx) || || 5/4 || 271.229 || || 6/5 || 271.564 (5 limit minimax) || || 10/9 || 271.623 (9 limit minimax) || || 4/3 || 271.708 || || 9/7 || 272.514 || || 11/10 || 273.001 || || 11/8 || 275.659 || [6 5/2] eigenmonzos: [[orwellwoo13]] [[orwellwoo22]] =MOSes= ==9-note (LsLsLsLss, proper)== || Small ("minor") interval || 114.29 || 228.59 || 385.72 || 500.02 || 657.15 || 771.44 || 928.57 || 1042.87 || || JI intervals represented || 15/14~16/15 || 8/7 || 5/4 || 4/3 || 16/11 || 14/9~11/7 || 12/7 || 11/6 || || Large ("major") interval || 157.13 || 271.43 || 428.56 || 542.85 || 699.98 || 814.28 || 971.41 || 1085.71 || || JI intervals represented || 12/11~11/10 || 7/6 || 14/11~9/7 || 11/8 || 3/2 || 8/5 || 7/4 || 15/8 || ==13-note (LLLsLLsLLsLLs, improper)== || Small ("minor") interval || 42.84 || 157.13 || 271.43 || 314.26 || 428.56 || 542.85 || 585.69 || 699.98 || 814.28 || 857 || 971.41 || 1085.71 || || JI intervals represented || || 12/11~11/10 || 7/6 || 6/5 || 14/11~9/7 || 11/8 || 7/5 || 3/2 || 8/5 || 18/11 || 7/4 || 15/8 || || Large ("major") interval || 114.29 || 228.59 || 342.88 || 385.72 || 500.02 || 614.31 || 657.15 || 771.44 || 885.74 || 928.57 || 1042.87 || 1157.16 || || JI intervals represented || 15/14~16/15 || 8/7 || 11/9 || 5/4 || 4/3 || 10/7 || 16/11 || 14/9~11/7 || 5/3 || 12/7 || 11/6 || || =Planar temperaments= Following is a list of rank three, or planar temperaments that are supported by orwell temperament. ||||~ Planar temperament ||||||||~ Among others, planar temperament is also supported by... || ||~ 7-limit ||~ 11-limit extension ||~ 9tet ||~ 22tet ||~ 31tet ||~ 53tet || || [[Marvel family|marvel]] || || negri, septimin, august, amavil, enneaportent || magic, pajara, wizard, porky || meantone, miracle, tritonic, slender, würschmidt || garibaldi, catakleismic || || || marvel || negri, septimin, enneaportent || magic, pajarous, wizard || meanpop, miracle, tritoni, slender || garibaldi, catakleismic || || || minerva || negric, august, amavil || telepathy, pajara || meantone, revelation, würschmidt || cataclysmic || || || artemis* || wilsec || divination, hemipaj, porky || migration, oracle, tritonic || || || [[Porwell family|hewuermity]] || || triforce, armodue, twothirdtonic || porcupine, astrology, shrutar, hendecatonic, septisuperfourth || hemiwürschmidt, valentine, mohajira, grendel || amity, hemischis, hemikleismic || || || zeus || triforce, armodue, twothirdtonic || porcupine, astrology, shrutar, hendecatonic || hemiwur, valentine, mohajira || hitchcock, hemikleismic || || || jupiter || || septisuperfourth || hemiwürschmidt, grendel || amity, hemischis || || [[Orwellismic family|orwellian]] || || beep, secund, infraorwell, niner || superpyth, doublewide, echidna || myna, mothra, sentinel, semisept || quartonic, buzzard || || || orwellian || pentoid, secund || suprapyth, doublewide || myno, mothra, sentinel || || || || guanyin || infraorwell, niner || superpyth, fleetwood, echidna || myna, mosura, semisept || quartonic, buzzard || || [[Nuwell family|nuwell]] || || progression, superpelog || quasisuper, hedgehog || squares, nusecond || tricot, hamity || || || big brother || progression, superpelog || quasisupra, hedgehog || squares, nusecond || tricot, hamity || || [[Horwell family|horwell]] || || || bisupermajor, escaped, fifthplus || hemithirds, worschmidt, tertiaseptal || countercata, pontiac || || || zelda || || bisupermajor, sensa || hemithirds, worschmidt, tertia || countercata || *weak extension (one or more generators from the parent temperament are split) =[[Chords of orwell]]= =MOS transversals= [[orwell13trans]] [[orwell22trans]] [[orwell31trans]] [[orwell13trans57]] [[orwell22trans57]] [[orwell31trans57]] =Music= [[http://www.archive.org/details/TrioInOrwell|Trio in Orwell]] [[http://www.archive.org/download/TrioInOrwell/TrioInOrwell.mp3|play]] by [[Gene Ward Smith]] [[earwig]], [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/earwig.mp3|play]], [[Technical Notes for Newbeams#Track%20notes:-Elf%20Dine%20on%20Ho%20Ho|Elf Dine on Ho Ho]], [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2004%20Hypnocloudsmack%201.mp3|play]], [[Technical Notes for Newbeams#Track%20notes:-Spun|Spun]], [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2008%20Spun.mp3|play]], [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+onedropofrain.mp3|one drop of rain]], [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+onedropofrain.mp3|play]], [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+ivecomewithabucketofroses.mp3|i've come with a bucket of roses]] and [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+myownhouse.mp3|my own house]] by [[Andrew Heathwaite]] [[http://micro.soonlabel.com/orwell/daily20100721-gpo-owellian-cameras.mp3|Orwellian Cameras]] by [[Chris Vaisvil]] [[http://archive.org/download/TunicataAndFugue/TunicataAndFugueVer2.mp3|Tunicata and Fugue]] by [[http://www.archive.org/details/TunicataAndFugue|Peter Kosmorsky]] [[https://soundcloud.com/tarkan-grood/mountain-village-tarkangrood|Mountain Villiage]] [[http://micro.soonlabel.com/gene_ward_smith/Others/Grood/Mountain_Village_TarkanGrood.mp3|play]] by Tarkan Grood [[http://micro.soonlabel.com/gene_ward_smith/transformers/swing-orwell9.mp3|Swing in Orwell-9]] [[http://micro.soonlabel.com/gene_ward_smith/Others/Roncevaux/Schizo_Blue__22_EDO_Orwell__first_mix_by_Roncevaux_on_SoundCloud___Hear_the_world_s_sounds.mp3|Schizo Blue]] by [[https://soundcloud.com/lois-lancaster/schizo-blue-22-edo-orwell|Roncevaux (Löis Lancaster)]] [[http://micro.soonlabel.com/gene_ward_smith/Others/Roncevaux/Sejaliscos_by_Roncevaux_on_SoundCloud___Hear_the_world_s_sounds.mp3|Sejaliscos]] by [[https://soundcloud.com/lois-lancaster/sejaliscos|Roncevaux]] =Keyboards= If only there were a way to make these interactive, that would be pretty nifty. [[image:Orwell_13.png width="1023" height="292"]] =[[image:Orwell_22.png width="1023" height="292"]]= [[image:orwell13_axis49.png]] See: [[Orwell on an Isomorphic Keyboard]]
Original HTML content:
<html><head><title>Orwell</title></head><body><span style="text-align: right; display: block;">Other languages: Deutsch </span><br /> <!-- ws:start:WikiTextTocRule:24:<img id="wikitext@@toc@@flat" class="WikiMedia WikiMediaTocFlat" title="Table of Contents" src="/site/embedthumbnail/toc/flat?w=100&h=16"/> --><!-- ws:end:WikiTextTocRule:24 --><!-- ws:start:WikiTextTocRule:25: --><a href="#Properties">Properties</a><!-- ws:end:WikiTextTocRule:25 --><!-- ws:start:WikiTextTocRule:26: --> | <a href="#Interval chain">Interval chain</a><!-- ws:end:WikiTextTocRule:26 --><!-- ws:start:WikiTextTocRule:27: --> | <a href="#Spectrum of Orwell Tunings by Eigenmonzos">Spectrum of Orwell Tunings by Eigenmonzos</a><!-- ws:end:WikiTextTocRule:27 --><!-- ws:start:WikiTextTocRule:28: --> | <a href="#MOSes">MOSes</a><!-- ws:end:WikiTextTocRule:28 --><!-- ws:start:WikiTextTocRule:29: --><!-- ws:end:WikiTextTocRule:29 --><!-- ws:start:WikiTextTocRule:30: --><!-- ws:end:WikiTextTocRule:30 --><!-- ws:start:WikiTextTocRule:31: --> | <a href="#Planar temperaments">Planar temperaments</a><!-- ws:end:WikiTextTocRule:31 --><!-- ws:start:WikiTextTocRule:32: --> | <a href="#Chords of orwell">Chords of orwell</a><!-- ws:end:WikiTextTocRule:32 --><!-- ws:start:WikiTextTocRule:33: --> | <a href="#MOS transversals">MOS transversals</a><!-- ws:end:WikiTextTocRule:33 --><!-- ws:start:WikiTextTocRule:34: --> | <a href="#Music">Music</a><!-- ws:end:WikiTextTocRule:34 --><!-- ws:start:WikiTextTocRule:35: --> | <a href="#Keyboards">Keyboards</a><!-- ws:end:WikiTextTocRule:35 --><!-- ws:start:WikiTextTocRule:36: --> | <a href="#toc11"></a><!-- ws:end:WikiTextTocRule:36 --><!-- ws:start:WikiTextTocRule:37: --> <!-- ws:end:WikiTextTocRule:37 --><!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="Properties"></a><!-- ws:end:WikiTextHeadingRule:0 -->Properties</h1> <a class="wiki_link" href="/Semicomma%20family#Seven%20limit%20children-Orwell">Orwell</a> — so named because 19 steps of <a class="wiki_link" href="/84edo">84edo</a>, or 19\84, is a possible generator — is an excellent 7-limit temperament and an amazing (because of the low complexity of 11) 11-limit temperament. The "perfect twelfth" 3/1 is divided into 7 equal steps. One of these steps represents 7/6; three represent 8/5. It's a member of the <a class="wiki_link" href="/Semicomma%20family">Semicomma family</a>. Alternately, the "fifth harmonic" 5/1 divided into 3 equal steps also makes a good orwell generator, being ~12/7.<br /> <br /> In the 11 limit, two generators are equated to 11/8 (meaning 99/98 is tempered out). This means that three stacked generators makes the <a class="wiki_link" href="/orwell%20tetrad">orwell tetrad</a> 1/1-7/6-11/8-8/5, a chord in which every interval is a (tempered) 11-limit consonance. Other such chords in orwell are the <a class="wiki_link" href="/keenanismic%20chords">keenanismic tetrads</a> and the <a class="wiki_link" href="/swetismic%20chords">swetismic chords</a>.<br /> <br /> Compatible equal temperaments include <a class="wiki_link" href="/22edo">22edo</a>, <a class="wiki_link" href="/31edo">31edo</a>, <a class="wiki_link" href="/53edo">53edo</a>, and <a class="wiki_link" href="/84edo">84edo</a>. Orwell is in better tune in lower limits than higher ones; the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> is <a class="wiki_link" href="/296edo">296edo</a> in the 5-limit, <a class="wiki_link" href="/137edo">137edo</a> in the 7-limit, and <a class="wiki_link" href="/53edo">53edo</a> in the 11-limit. It tempers out the semicomma in the 5-limit, and so belongs to the <a class="wiki_link" href="/semicomma%20family">semicomma family</a>. In the 7-limit it tempers out 225/224, 1728/1715, 2430/2401 and 6144/6125 in the 7-limit, and 99/98, 121/120, 176/175, 385/384 and 540/539 in the 11-limit. By adding 275/273 to the list of commas it can be extended to the 13-limit as <a class="wiki_link" href="/Semicomma%20family#Orwell-13-limit">tridecimal orwell</a>, and by adding instead 66/65, <a class="wiki_link" href="/Semicomma%20family#Winston">winston temperament</a>.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="Interval chain"></a><!-- ws:end:WikiTextHeadingRule:2 -->Interval chain</h1> <table class="wiki_table"> <tr> <th>Generators<br /> </th> <th>Cents*<br /> </th> <th>11-limit ratios<br /> (orwell mapping)<br /> </th> <th>13-limit ratios<br /> (orwell mapping)<br /> </th> <th>13-limit ratios<br /> (winston mapping)<br /> </th> <th>13-limit ratios<br /> (blair mapping)<br /> </th> </tr> <tr> <td>0<br /> </td> <td style="text-align: right;">0.00<br /> </td> <td style="text-align: left;">1/1<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td style="text-align: right;">271.43<br /> </td> <td style="text-align: left;">7/6<br /> </td> <td><br /> </td> <td><br /> </td> <td>13/11, 15/13<br /> </td> </tr> <tr> <td>2<br /> </td> <td style="text-align: right;">542.85<br /> </td> <td style="text-align: left;">11/8, 15/11<br /> </td> <td><br /> </td> <td>18/13<br /> </td> <td>35/26, 39/28<br /> </td> </tr> <tr> <td>3<br /> </td> <td style="text-align: right;">814.28<br /> </td> <td style="text-align: left;">8/5<br /> </td> <td><br /> </td> <td>21/13, 52/33<br /> </td> <td>13/8<br /> </td> </tr> <tr> <td>4<br /> </td> <td style="text-align: right;">1085.71<br /> </td> <td style="text-align: left;">15/8, 28/15<br /> </td> <td><br /> </td> <td>13/7<br /> </td> <td>24/13<br /> </td> </tr> <tr> <td>5<br /> </td> <td style="text-align: right;">157.13<br /> </td> <td style="text-align: left;">12/11, 11/10, 35/32<br /> </td> <td><br /> </td> <td>13/12<br /> </td> <td>14/13<br /> </td> </tr> <tr> <td>6<br /> </td> <td style="text-align: right;">428.56<br /> </td> <td style="text-align: left;">14/11, 9/7, 32/25<br /> </td> <td><br /> </td> <td><br /> </td> <td>13/10, 33/26<br /> </td> </tr> <tr> <td>7<br /> </td> <td style="text-align: right;">699.98<br /> </td> <td style="text-align: left;">3/2<br /> </td> <td><br /> </td> <td>52/35<br /> </td> <td><br /> </td> </tr> <tr> <td>8<br /> </td> <td style="text-align: right;">971.41<br /> </td> <td style="text-align: left;">7/4<br /> </td> <td><br /> </td> <td>26/15<br /> </td> <td><br /> </td> </tr> <tr> <td>9<br /> </td> <td style="text-align: right;">42.84<br /> </td> <td style="text-align: left;">49/48, 36/35, 33/32<br /> </td> <td>40/39<br /> </td> <td>27/26<br /> </td> <td>26/25<br /> </td> </tr> <tr> <td>10<br /> </td> <td style="text-align: right;">314.26<br /> </td> <td style="text-align: left;">6/5<br /> </td> <td><br /> </td> <td>13/11<br /> </td> <td>39/32<br /> </td> </tr> <tr> <td>11<br /> </td> <td style="text-align: right;">585.69<br /> </td> <td style="text-align: left;">7/5<br /> </td> <td><br /> </td> <td>39/28<br /> </td> <td>18/13<br /> </td> </tr> <tr> <td>12<br /> </td> <td style="text-align: right;">857.12<br /> </td> <td style="text-align: left;">18/11<br /> </td> <td>64/39<br /> </td> <td>13/8<br /> </td> <td>21/13<br /> </td> </tr> <tr> <td>13<br /> </td> <td style="text-align: right;">1128.54<br /> </td> <td style="text-align: left;">21/11, 27/14, 48/25<br /> </td> <td>25/13<br /> </td> <td><br /> </td> <td>39/20<br /> </td> </tr> <tr> <td>14<br /> </td> <td style="text-align: right;">199.97<br /> </td> <td style="text-align: left;">9/8, 28/25<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>15<br /> </td> <td style="text-align: right;">471.40<br /> </td> <td style="text-align: left;">21/16<br /> </td> <td><br /> </td> <td>13/10<br /> </td> <td><br /> </td> </tr> <tr> <td>16<br /> </td> <td style="text-align: right;">742.82<br /> </td> <td style="text-align: left;">49/32, 54/35<br /> </td> <td>20/13<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>17<br /> </td> <td style="text-align: right;">1014.25<br /> </td> <td style="text-align: left;">9/5<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>18<br /> </td> <td style="text-align: right;">85.67<br /> </td> <td style="text-align: left;">21/20<br /> </td> <td><br /> </td> <td>26/25<br /> </td> <td>27/26<br /> </td> </tr> <tr> <td>19<br /> </td> <td style="text-align: right;">357.10<br /> </td> <td style="text-align: left;">27/22, 49/40<br /> </td> <td>16/13<br /> </td> <td>39/32<br /> </td> <td><br /> </td> </tr> <tr> <td>20<br /> </td> <td style="text-align: right;">628.52<br /> </td> <td>36/25<br /> </td> <td>56/39<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>21<br /> </td> <td style="text-align: right;">899.95<br /> </td> <td>27/16, 42/25<br /> </td> <td>22/13<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>22<br /> </td> <td style="text-align: right;">1171.38<br /> </td> <td>63/32<br /> </td> <td><br /> </td> <td>39/20<br /> </td> <td><br /> </td> </tr> </table> *in 11-limit POTE tuning<br /> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h1> --><h1 id="toc2"><a name="Spectrum of Orwell Tunings by Eigenmonzos"></a><!-- ws:end:WikiTextHeadingRule:4 -->Spectrum of Orwell Tunings by Eigenmonzos</h1> <table class="wiki_table"> <tr> <th>Eigenmonzo<br /> </th> <th>Subminor Third<br /> </th> </tr> <tr> <td>7/6<br /> </td> <td>266.871<br /> </td> </tr> <tr> <td>14/11<br /> </td> <td>269.585<br /> </td> </tr> <tr> <td>12/11<br /> </td> <td>270.127<br /> </td> </tr> <tr> <td>11/9<br /> </td> <td>271.049<br /> </td> </tr> <tr> <td>8/7<br /> </td> <td>271.103<br /> </td> </tr> <tr> <td>7/5<br /> </td> <td>271.137 (7 and 11 limit minimx)<br /> </td> </tr> <tr> <td>5/4<br /> </td> <td>271.229<br /> </td> </tr> <tr> <td>6/5<br /> </td> <td>271.564 (5 limit minimax)<br /> </td> </tr> <tr> <td>10/9<br /> </td> <td>271.623 (9 limit minimax)<br /> </td> </tr> <tr> <td>4/3<br /> </td> <td>271.708<br /> </td> </tr> <tr> <td>9/7<br /> </td> <td>272.514<br /> </td> </tr> <tr> <td>11/10<br /> </td> <td>273.001<br /> </td> </tr> <tr> <td>11/8<br /> </td> <td>275.659<br /> </td> </tr> </table> [6 5/2] eigenmonzos: <a class="wiki_link" href="/orwellwoo13">orwellwoo13</a> <a class="wiki_link" href="/orwellwoo22">orwellwoo22</a><br /> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h1> --><h1 id="toc3"><a name="MOSes"></a><!-- ws:end:WikiTextHeadingRule:6 -->MOSes</h1> <!-- ws:start:WikiTextHeadingRule:8:<h2> --><h2 id="toc4"><a name="MOSes-9-note (LsLsLsLss, proper)"></a><!-- ws:end:WikiTextHeadingRule:8 -->9-note (LsLsLsLss, proper)</h2> <table class="wiki_table"> <tr> <td>Small ("minor") interval<br /> </td> <td>114.29<br /> </td> <td>228.59<br /> </td> <td>385.72<br /> </td> <td>500.02<br /> </td> <td>657.15<br /> </td> <td>771.44<br /> </td> <td>928.57<br /> </td> <td>1042.87<br /> </td> </tr> <tr> <td>JI intervals represented<br /> </td> <td>15/14~16/15<br /> </td> <td>8/7<br /> </td> <td>5/4<br /> </td> <td>4/3<br /> </td> <td>16/11<br /> </td> <td>14/9~11/7<br /> </td> <td>12/7<br /> </td> <td>11/6<br /> </td> </tr> <tr> <td>Large ("major") interval<br /> </td> <td>157.13<br /> </td> <td>271.43<br /> </td> <td>428.56<br /> </td> <td>542.85<br /> </td> <td>699.98<br /> </td> <td>814.28<br /> </td> <td>971.41<br /> </td> <td>1085.71<br /> </td> </tr> <tr> <td>JI intervals represented<br /> </td> <td>12/11~11/10<br /> </td> <td>7/6<br /> </td> <td>14/11~9/7<br /> </td> <td>11/8<br /> </td> <td>3/2<br /> </td> <td>8/5<br /> </td> <td>7/4<br /> </td> <td>15/8<br /> </td> </tr> </table> <!-- ws:start:WikiTextHeadingRule:10:<h2> --><h2 id="toc5"><a name="MOSes-13-note (LLLsLLsLLsLLs, improper)"></a><!-- ws:end:WikiTextHeadingRule:10 -->13-note (LLLsLLsLLsLLs, improper)</h2> <table class="wiki_table"> <tr> <td>Small ("minor") interval<br /> </td> <td>42.84<br /> </td> <td>157.13<br /> </td> <td>271.43<br /> </td> <td>314.26<br /> </td> <td>428.56<br /> </td> <td>542.85<br /> </td> <td>585.69<br /> </td> <td>699.98<br /> </td> <td>814.28<br /> </td> <td>857<br /> </td> <td>971.41<br /> </td> <td>1085.71<br /> </td> </tr> <tr> <td>JI intervals represented<br /> </td> <td><br /> </td> <td>12/11~11/10<br /> </td> <td>7/6<br /> </td> <td>6/5<br /> </td> <td>14/11~9/7<br /> </td> <td>11/8<br /> </td> <td>7/5<br /> </td> <td>3/2<br /> </td> <td>8/5<br /> </td> <td>18/11<br /> </td> <td>7/4<br /> </td> <td>15/8<br /> </td> </tr> <tr> <td>Large ("major") interval<br /> </td> <td>114.29<br /> </td> <td>228.59<br /> </td> <td>342.88<br /> </td> <td>385.72<br /> </td> <td>500.02<br /> </td> <td>614.31<br /> </td> <td>657.15<br /> </td> <td>771.44<br /> </td> <td>885.74<br /> </td> <td>928.57<br /> </td> <td>1042.87<br /> </td> <td>1157.16<br /> </td> </tr> <tr> <td>JI intervals represented<br /> </td> <td>15/14~16/15<br /> </td> <td>8/7<br /> </td> <td>11/9<br /> </td> <td>5/4<br /> </td> <td>4/3<br /> </td> <td>10/7<br /> </td> <td>16/11<br /> </td> <td>14/9~11/7<br /> </td> <td>5/3<br /> </td> <td>12/7<br /> </td> <td>11/6<br /> </td> <td><br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:12:<h1> --><h1 id="toc6"><a name="Planar temperaments"></a><!-- ws:end:WikiTextHeadingRule:12 -->Planar temperaments</h1> Following is a list of rank three, or planar temperaments that are supported by orwell temperament.<br /> <table class="wiki_table"> <tr> <th colspan="2">Planar temperament<br /> </th> <th colspan="4">Among others, planar temperament is also supported by...<br /> </th> </tr> <tr> <th>7-limit<br /> </th> <th>11-limit<br /> extension<br /> </th> <th>9tet<br /> </th> <th>22tet<br /> </th> <th>31tet<br /> </th> <th>53tet<br /> </th> </tr> <tr> <td><a class="wiki_link" href="/Marvel%20family">marvel</a><br /> </td> <td><br /> </td> <td>negri, septimin, august,<br /> amavil, enneaportent<br /> </td> <td>magic, pajara, wizard, porky<br /> </td> <td>meantone, miracle, tritonic,<br /> slender, würschmidt<br /> </td> <td>garibaldi, catakleismic<br /> </td> </tr> <tr> <td><br /> </td> <td>marvel<br /> </td> <td>negri, septimin, enneaportent<br /> </td> <td>magic, pajarous, wizard<br /> </td> <td>meanpop, miracle, tritoni, slender<br /> </td> <td>garibaldi, catakleismic<br /> </td> </tr> <tr> <td><br /> </td> <td>minerva<br /> </td> <td>negric, august, amavil<br /> </td> <td>telepathy, pajara<br /> </td> <td>meantone, revelation, würschmidt<br /> </td> <td>cataclysmic<br /> </td> </tr> <tr> <td><br /> </td> <td>artemis*<br /> </td> <td>wilsec<br /> </td> <td>divination, hemipaj, porky<br /> </td> <td>migration, oracle, tritonic<br /> </td> <td><br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Porwell%20family">hewuermity</a><br /> </td> <td><br /> </td> <td>triforce, armodue,<br /> twothirdtonic<br /> </td> <td>porcupine, astrology, shrutar,<br /> hendecatonic, septisuperfourth<br /> </td> <td>hemiwürschmidt, valentine,<br /> mohajira, grendel<br /> </td> <td>amity, hemischis,<br /> hemikleismic<br /> </td> </tr> <tr> <td><br /> </td> <td>zeus<br /> </td> <td>triforce, armodue,<br /> twothirdtonic<br /> </td> <td>porcupine, astrology, shrutar,<br /> hendecatonic<br /> </td> <td>hemiwur, valentine, mohajira<br /> </td> <td>hitchcock,<br /> hemikleismic<br /> </td> </tr> <tr> <td><br /> </td> <td>jupiter<br /> </td> <td><br /> </td> <td>septisuperfourth<br /> </td> <td>hemiwürschmidt, grendel<br /> </td> <td>amity, hemischis<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Orwellismic%20family">orwellian</a><br /> </td> <td><br /> </td> <td>beep, secund, infraorwell,<br /> niner<br /> </td> <td>superpyth, doublewide,<br /> echidna<br /> </td> <td>myna, mothra, sentinel,<br /> semisept<br /> </td> <td>quartonic, buzzard<br /> </td> </tr> <tr> <td><br /> </td> <td>orwellian<br /> </td> <td>pentoid, secund<br /> </td> <td>suprapyth, doublewide<br /> </td> <td>myno, mothra, sentinel<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td>guanyin<br /> </td> <td>infraorwell, niner<br /> </td> <td>superpyth, fleetwood, echidna<br /> </td> <td>myna, mosura, semisept<br /> </td> <td>quartonic, buzzard<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Nuwell%20family">nuwell</a><br /> </td> <td><br /> </td> <td>progression, superpelog<br /> </td> <td>quasisuper, hedgehog<br /> </td> <td>squares, nusecond<br /> </td> <td>tricot, hamity<br /> </td> </tr> <tr> <td><br /> </td> <td>big brother<br /> </td> <td>progression, superpelog<br /> </td> <td>quasisupra, hedgehog<br /> </td> <td>squares, nusecond<br /> </td> <td>tricot, hamity<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Horwell%20family">horwell</a><br /> </td> <td><br /> </td> <td><br /> </td> <td>bisupermajor, escaped,<br /> fifthplus<br /> </td> <td>hemithirds, worschmidt,<br /> tertiaseptal<br /> </td> <td>countercata, pontiac<br /> </td> </tr> <tr> <td><br /> </td> <td>zelda<br /> </td> <td><br /> </td> <td>bisupermajor, sensa<br /> </td> <td>hemithirds, worschmidt, tertia<br /> </td> <td>countercata<br /> </td> </tr> </table> *weak extension (one or more generators from the parent temperament are split)<br /> <br /> <!-- ws:start:WikiTextHeadingRule:14:<h1> --><h1 id="toc7"><a name="Chords of orwell"></a><!-- ws:end:WikiTextHeadingRule:14 --><a class="wiki_link" href="/Chords%20of%20orwell">Chords of orwell</a></h1> <br /> <!-- ws:start:WikiTextHeadingRule:16:<h1> --><h1 id="toc8"><a name="MOS transversals"></a><!-- ws:end:WikiTextHeadingRule:16 -->MOS transversals</h1> <a class="wiki_link" href="/orwell13trans">orwell13trans</a><br /> <a class="wiki_link" href="/orwell22trans">orwell22trans</a><br /> <a class="wiki_link" href="/orwell31trans">orwell31trans</a><br /> <a class="wiki_link" href="/orwell13trans57">orwell13trans57</a><br /> <a class="wiki_link" href="/orwell22trans57">orwell22trans57</a><br /> <a class="wiki_link" href="/orwell31trans57">orwell31trans57</a><br /> <br /> <br /> <!-- ws:start:WikiTextHeadingRule:18:<h1> --><h1 id="toc9"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:18 -->Music</h1> <a class="wiki_link_ext" href="http://www.archive.org/details/TrioInOrwell" rel="nofollow">Trio in Orwell</a> <a class="wiki_link_ext" href="http://www.archive.org/download/TrioInOrwell/TrioInOrwell.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Gene%20Ward%20Smith">Gene Ward Smith</a><br /> <a class="wiki_link" href="/earwig">earwig</a>, <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/earwig.mp3" rel="nofollow">play</a>,<br /> <a class="wiki_link" href="/Technical%20Notes%20for%20Newbeams#Track%20notes:-Elf%20Dine%20on%20Ho%20Ho">Elf Dine on Ho Ho</a>, <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2004%20Hypnocloudsmack%201.mp3" rel="nofollow">play</a>,<br /> <a class="wiki_link" href="/Technical%20Notes%20for%20Newbeams#Track%20notes:-Spun">Spun</a>, <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2008%20Spun.mp3" rel="nofollow">play</a>,<br /> <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+onedropofrain.mp3" rel="nofollow">one drop of rain</a>, <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+onedropofrain.mp3" rel="nofollow">play</a>,<br /> <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+ivecomewithabucketofroses.mp3" rel="nofollow">i've come with a bucket of roses</a> and <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+myownhouse.mp3" rel="nofollow">my own house</a> by <a class="wiki_link" href="/Andrew%20Heathwaite">Andrew Heathwaite</a><br /> <a class="wiki_link_ext" href="http://micro.soonlabel.com/orwell/daily20100721-gpo-owellian-cameras.mp3" rel="nofollow">Orwellian Cameras</a> by <a class="wiki_link" href="/Chris%20Vaisvil">Chris Vaisvil</a><br /> <a class="wiki_link_ext" href="http://archive.org/download/TunicataAndFugue/TunicataAndFugueVer2.mp3" rel="nofollow">Tunicata and Fugue</a> by <a class="wiki_link_ext" href="http://www.archive.org/details/TunicataAndFugue" rel="nofollow">Peter Kosmorsky</a><br /> <a class="wiki_link_ext" href="https://soundcloud.com/tarkan-grood/mountain-village-tarkangrood" rel="nofollow">Mountain Villiage</a> <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Grood/Mountain_Village_TarkanGrood.mp3" rel="nofollow">play</a> by Tarkan Grood<br /> <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/transformers/swing-orwell9.mp3" rel="nofollow">Swing in Orwell-9</a><br /> <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Roncevaux/Schizo_Blue__22_EDO_Orwell__first_mix_by_Roncevaux_on_SoundCloud___Hear_the_world_s_sounds.mp3" rel="nofollow">Schizo Blue</a> by <a class="wiki_link_ext" href="https://soundcloud.com/lois-lancaster/schizo-blue-22-edo-orwell" rel="nofollow">Roncevaux (Löis Lancaster)</a><br /> <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Roncevaux/Sejaliscos_by_Roncevaux_on_SoundCloud___Hear_the_world_s_sounds.mp3" rel="nofollow">Sejaliscos</a> by <a class="wiki_link_ext" href="https://soundcloud.com/lois-lancaster/sejaliscos" rel="nofollow">Roncevaux</a><br /> <br /> <!-- ws:start:WikiTextHeadingRule:20:<h1> --><h1 id="toc10"><a name="Keyboards"></a><!-- ws:end:WikiTextHeadingRule:20 -->Keyboards</h1> If only there were a way to make these interactive, that would be pretty nifty.<br /> <!-- ws:start:WikiTextLocalImageRule:876:<img src="/file/view/Orwell_13.png/288210264/1023x292/Orwell_13.png" alt="" title="" style="height: 292px; width: 1023px;" /> --><img src="/file/view/Orwell_13.png/288210264/1023x292/Orwell_13.png" alt="Orwell_13.png" title="Orwell_13.png" style="height: 292px; width: 1023px;" /><!-- ws:end:WikiTextLocalImageRule:876 --><br /> <!-- ws:start:WikiTextHeadingRule:22:<h1> --><h1 id="toc11"><!-- ws:end:WikiTextHeadingRule:22 --><!-- ws:start:WikiTextLocalImageRule:877:<img src="/file/view/Orwell_22.png/288210350/1023x292/Orwell_22.png" alt="" title="" style="height: 292px; width: 1023px;" /> --><img src="/file/view/Orwell_22.png/288210350/1023x292/Orwell_22.png" alt="Orwell_22.png" title="Orwell_22.png" style="height: 292px; width: 1023px;" /><!-- ws:end:WikiTextLocalImageRule:877 --></h1> <!-- ws:start:WikiTextLocalImageRule:878:<img src="/file/view/orwell13_axis49.png/302248228/orwell13_axis49.png" alt="" title="" /> --><img src="/file/view/orwell13_axis49.png/302248228/orwell13_axis49.png" alt="orwell13_axis49.png" title="orwell13_axis49.png" /><!-- ws:end:WikiTextLocalImageRule:878 --><br /> See: <a class="wiki_link" href="/Orwell%20on%20an%20Isomorphic%20Keyboard">Orwell on an Isomorphic Keyboard</a></body></html>