Orwell

Revision as of 16:03, 10 March 2015 by Wikispaces>hstraub (**Imported revision 543649648 - Original comment: **)

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author hstraub and made on 2015-03-10 16:03:51 UTC.
The original revision id was 543649648.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

<span style="display: block; text-align: right;">Other languages: [[xenharmonie/Orwell|Deutsch]]
</span>
[[toc|flat]]
=Properties= 
[[Semicomma family#Seven%20limit%20children-Orwell|Orwell]] — so named because 19 steps of [[84edo]], or 19\84, is a possible generator — is an excellent 7-limit temperament and an amazing (because of the low complexity of 11) 11-limit temperament. The "perfect twelfth" 3/1 is divided into 7 equal steps. One of these steps represents 7/6; three represent 8/5. It's a member of the [[Semicomma family]]. Alternately, the "fifth harmonic" 5/1 divided into 3 equal steps also makes a good orwell generator, being ~12/7.

In the 11 limit, two generators are equated to 11/8 (meaning 99/98 is tempered out). This means that three stacked generators makes the [[orwell tetrad]] 1/1-7/6-11/8-8/5, a chord in which every interval is a (tempered) 11-limit consonance. Other such chords in orwell are the [[keenanismic chords|keenanismic tetrads]] and the [[swetismic chords]].

Compatible equal temperaments include [[22edo]], [[31edo]], [[53edo]], and [[84edo]]. Orwell is in better tune in lower limits than higher ones; the [[optimal patent val]] is [[296edo]] in the 5-limit, [[137edo]] in the 7-limit, and [[53edo]] in the 11-limit. It tempers out the semicomma in the 5-limit, and so belongs to the [[semicomma family]]. In the 7-limit it tempers out 225/224, 1728/1715, 2430/2401 and 6144/6125 in the 7-limit, and 99/98, 121/120, 176/175, 385/384 and 540/539 in the 11-limit. By adding 275/273 to the list of commas it can be extended to the 13-limit as [[Semicomma family#Orwell-13-limit|tridecimal orwell]], and by adding instead 66/65, [[Semicomma family#Winston|winston temperament]].

=Interval chain= 
||~ Generators ||~ Cents* ||~ 11-limit ratios
(orwell mapping) ||~ 13-limit ratios
(orwell mapping) ||~ 13-limit ratios
(winston mapping) ||~ 13-limit ratios
(blair mapping) ||
|| 0 ||> 0.00 ||< 1/1 ||   ||   ||   ||
|| 1 ||> 271.43 ||< 7/6 ||   ||   || 13/11, 15/13 ||
|| 2 ||> 542.85 ||< 11/8, 15/11 ||   || 18/13 || 35/26, 39/28 ||
|| 3 ||> 814.28 ||< 8/5 ||   || 21/13, 52/33 || 13/8 ||
|| 4 ||> 1085.71 ||< 15/8, 28/15 ||   || 13/7 || 24/13 ||
|| 5 ||> 157.13 ||< 12/11, 11/10, 35/32 ||   || 13/12 || 14/13 ||
|| 6 ||> 428.56 ||< 14/11, 9/7, 32/25 ||   ||   || 13/10, 33/26 ||
|| 7 ||> 699.98 ||< 3/2 ||   || 52/35 ||   ||
|| 8 ||> 971.41 ||< 7/4 ||   || 26/15 ||   ||
|| 9 ||> 42.84 ||< 49/48, 36/35, 33/32 || 40/39 || 27/26 || 26/25 ||
|| 10 ||> 314.26 ||< 6/5 ||   || 13/11 || 39/32 ||
|| 11 ||> 585.69 ||< 7/5 ||   || 39/28 || 18/13 ||
|| 12 ||> 857.12 ||< 18/11 || 64/39 || 13/8 || 21/13 ||
|| 13 ||> 1128.54 ||< 21/11, 27/14, 48/25 || 25/13 ||   || 39/20 ||
|| 14 ||> 199.97 ||< 9/8, 28/25 ||   ||   ||   ||
|| 15 ||> 471.40 ||< 21/16 ||   || 13/10 ||   ||
|| 16 ||> 742.82 ||< 49/32, 54/35 || 20/13 ||   ||   ||
|| 17 ||> 1014.25 ||< 9/5 ||   ||   ||   ||
|| 18 ||> 85.67 ||< 21/20 ||   || 26/25 || 27/26 ||
|| 19 ||> 357.10 ||< 27/22, 49/40 || 16/13 || 39/32 ||   ||
|| 20 ||> 628.52 || 36/25 || 56/39 ||   ||   ||
|| 21 ||> 899.95 || 27/16, 42/25 || 22/13 ||   ||   ||
|| 22 ||> 1171.38 || 63/32 ||   || 39/20 ||   ||
*in 11-limit POTE tuning

=Spectrum of Orwell Tunings by Eigenmonzos= 
||~ Eigenmonzo ||~ Subminor Third ||
|| 7/6 || 266.871 ||
|| 14/11 || 269.585 ||
|| 12/11 || 270.127 ||
|| 11/9 || 271.049 ||
|| 8/7 || 271.103 ||
|| 7/5 || 271.137 (7 and 11 limit minimx) ||
|| 5/4 || 271.229 ||
|| 6/5 || 271.564 (5 limit minimax) ||
|| 10/9 || 271.623 (9 limit minimax) ||
|| 4/3 || 271.708 ||
|| 9/7 || 272.514 ||
|| 11/10 || 273.001 ||
|| 11/8 || 275.659 ||
[6 5/2] eigenmonzos: [[orwellwoo13]] [[orwellwoo22]]

=MOSes= 
==9-note (LsLsLsLss, proper)== 
|| Small ("minor") interval || 114.29 || 228.59 || 385.72 || 500.02 || 657.15 || 771.44 || 928.57 || 1042.87 ||
|| JI intervals represented || 15/14~16/15 || 8/7 || 5/4 || 4/3 || 16/11 || 14/9~11/7 || 12/7 || 11/6 ||
|| Large ("major") interval || 157.13 || 271.43 || 428.56 || 542.85 || 699.98 || 814.28 || 971.41 || 1085.71 ||
|| JI intervals represented || 12/11~11/10 || 7/6 || 14/11~9/7 || 11/8 || 3/2 || 8/5 || 7/4 || 15/8 ||
==13-note (LLLsLLsLLsLLs, improper)== 
|| Small ("minor") interval || 42.84 || 157.13 || 271.43 || 314.26 || 428.56 || 542.85 || 585.69 || 699.98 || 814.28 || 857 || 971.41 || 1085.71 ||
|| JI intervals represented ||   || 12/11~11/10 || 7/6 || 6/5 || 14/11~9/7 || 11/8 || 7/5 || 3/2 || 8/5 || 18/11 || 7/4 || 15/8 ||
|| Large ("major") interval || 114.29 || 228.59 || 342.88 || 385.72 || 500.02 || 614.31 || 657.15 || 771.44 || 885.74 || 928.57 || 1042.87 || 1157.16 ||
|| JI intervals represented || 15/14~16/15 || 8/7 || 11/9 || 5/4 || 4/3 || 10/7 || 16/11 || 14/9~11/7 || 5/3 || 12/7 || 11/6 ||   ||

=Planar temperaments= 
Following is a list of rank three, or planar temperaments that are supported by orwell temperament.
||||~ Planar temperament ||||||||~ Among others, planar temperament is also supported by... ||
||~ 7-limit ||~ 11-limit
extension ||~ 9tet ||~ 22tet ||~ 31tet ||~ 53tet ||
|| [[Marvel family|marvel]] ||   || negri, septimin, august,
amavil, enneaportent || magic, pajara, wizard, porky || meantone, miracle, tritonic,
slender, würschmidt || garibaldi, catakleismic ||
||   || marvel || negri, septimin, enneaportent || magic, pajarous, wizard || meanpop, miracle, tritoni, slender || garibaldi, catakleismic ||
||   || minerva || negric, august, amavil || telepathy, pajara || meantone, revelation, würschmidt || cataclysmic ||
||   || artemis* || wilsec || divination, hemipaj, porky || migration, oracle, tritonic ||   ||
|| [[Porwell family|hewuermity]] ||   || triforce, armodue,
twothirdtonic || porcupine, astrology, shrutar,
hendecatonic, septisuperfourth || hemiwürschmidt, valentine,
mohajira, grendel || amity, hemischis,
hemikleismic ||
||   || zeus || triforce, armodue,
twothirdtonic || porcupine, astrology, shrutar,
hendecatonic || hemiwur, valentine, mohajira || hitchcock,
hemikleismic ||
||   || jupiter ||   || septisuperfourth || hemiwürschmidt, grendel || amity, hemischis ||
|| [[Orwellismic family|orwellian]] ||   || beep, secund, infraorwell,
niner || superpyth, doublewide,
echidna || myna, mothra, sentinel,
semisept || quartonic, buzzard ||
||   || orwellian || pentoid, secund || suprapyth, doublewide || myno, mothra, sentinel ||   ||
||   || guanyin || infraorwell, niner || superpyth, fleetwood, echidna || myna, mosura, semisept || quartonic, buzzard ||
|| [[Nuwell family|nuwell]] ||   || progression, superpelog || quasisuper, hedgehog || squares, nusecond || tricot, hamity ||
||   || big brother || progression, superpelog || quasisupra, hedgehog || squares, nusecond || tricot, hamity ||
|| [[Horwell family|horwell]] ||   ||   || bisupermajor, escaped,
fifthplus || hemithirds, worschmidt,
tertiaseptal || countercata, pontiac ||
||   || zelda ||   || bisupermajor, sensa || hemithirds, worschmidt, tertia || countercata ||
*weak extension (one or more generators from the parent temperament are split)

=[[Chords of orwell]]= 

=MOS transversals= 
[[orwell13trans]]
[[orwell22trans]]
[[orwell31trans]]
[[orwell13trans57]]
[[orwell22trans57]]
[[orwell31trans57]]


=Music= 
[[http://www.archive.org/details/TrioInOrwell|Trio in Orwell]] [[http://www.archive.org/download/TrioInOrwell/TrioInOrwell.mp3|play]] by [[Gene Ward Smith]]
[[earwig]], [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/earwig.mp3|play]],
[[Technical Notes for Newbeams#Track%20notes:-Elf%20Dine%20on%20Ho%20Ho|Elf Dine on Ho Ho]], [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2004%20Hypnocloudsmack%201.mp3|play]],
[[Technical Notes for Newbeams#Track%20notes:-Spun|Spun]], [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2008%20Spun.mp3|play]],
[[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+onedropofrain.mp3|one drop of rain]], [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+onedropofrain.mp3|play]],
[[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+ivecomewithabucketofroses.mp3|i've come with a bucket of roses]] and [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+myownhouse.mp3|my own house]] by [[Andrew Heathwaite]]
[[http://micro.soonlabel.com/orwell/daily20100721-gpo-owellian-cameras.mp3|Orwellian Cameras]] by [[Chris Vaisvil]]
[[http://archive.org/download/TunicataAndFugue/TunicataAndFugueVer2.mp3|Tunicata and Fugue]] by [[http://www.archive.org/details/TunicataAndFugue|Peter Kosmorsky]]
[[https://soundcloud.com/tarkan-grood/mountain-village-tarkangrood|Mountain Villiage]] [[http://micro.soonlabel.com/gene_ward_smith/Others/Grood/Mountain_Village_TarkanGrood.mp3|play]] by Tarkan Grood
[[http://micro.soonlabel.com/gene_ward_smith/transformers/swing-orwell9.mp3|Swing in Orwell-9]]
[[http://micro.soonlabel.com/gene_ward_smith/Others/Roncevaux/Schizo_Blue__22_EDO_Orwell__first_mix_by_Roncevaux_on_SoundCloud___Hear_the_world_s_sounds.mp3|Schizo Blue]] by [[https://soundcloud.com/lois-lancaster/schizo-blue-22-edo-orwell|Roncevaux (Löis Lancaster)]]
[[http://micro.soonlabel.com/gene_ward_smith/Others/Roncevaux/Sejaliscos_by_Roncevaux_on_SoundCloud___Hear_the_world_s_sounds.mp3|Sejaliscos]] by [[https://soundcloud.com/lois-lancaster/sejaliscos|Roncevaux]]

=Keyboards= 
If only there were a way to make these interactive, that would be pretty nifty.
[[image:Orwell_13.png width="1023" height="292"]]
=[[image:Orwell_22.png width="1023" height="292"]]= 
[[image:orwell13_axis49.png]]
See: [[Orwell on an Isomorphic Keyboard]]

Original HTML content:

<html><head><title>Orwell</title></head><body><span style="display: block; text-align: right;">Other languages: <a class="wiki_link" href="http://xenharmonie.wikispaces.com/Orwell">Deutsch</a><br />
</span><br />
<!-- ws:start:WikiTextTocRule:24:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:24 --><!-- ws:start:WikiTextTocRule:25: --><a href="#Properties">Properties</a><!-- ws:end:WikiTextTocRule:25 --><!-- ws:start:WikiTextTocRule:26: --> | <a href="#Interval chain">Interval chain</a><!-- ws:end:WikiTextTocRule:26 --><!-- ws:start:WikiTextTocRule:27: --> | <a href="#Spectrum of Orwell Tunings by Eigenmonzos">Spectrum of Orwell Tunings by Eigenmonzos</a><!-- ws:end:WikiTextTocRule:27 --><!-- ws:start:WikiTextTocRule:28: --> | <a href="#MOSes">MOSes</a><!-- ws:end:WikiTextTocRule:28 --><!-- ws:start:WikiTextTocRule:29: --><!-- ws:end:WikiTextTocRule:29 --><!-- ws:start:WikiTextTocRule:30: --><!-- ws:end:WikiTextTocRule:30 --><!-- ws:start:WikiTextTocRule:31: --> | <a href="#Planar temperaments">Planar temperaments</a><!-- ws:end:WikiTextTocRule:31 --><!-- ws:start:WikiTextTocRule:32: --> | <a href="#Chords of orwell">Chords of orwell</a><!-- ws:end:WikiTextTocRule:32 --><!-- ws:start:WikiTextTocRule:33: --> | <a href="#MOS transversals">MOS transversals</a><!-- ws:end:WikiTextTocRule:33 --><!-- ws:start:WikiTextTocRule:34: --> | <a href="#Music">Music</a><!-- ws:end:WikiTextTocRule:34 --><!-- ws:start:WikiTextTocRule:35: --> | <a href="#Keyboards">Keyboards</a><!-- ws:end:WikiTextTocRule:35 --><!-- ws:start:WikiTextTocRule:36: --> | <a href="#toc11"></a><!-- ws:end:WikiTextTocRule:36 --><!-- ws:start:WikiTextTocRule:37: -->
<!-- ws:end:WikiTextTocRule:37 --><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Properties"></a><!-- ws:end:WikiTextHeadingRule:0 -->Properties</h1>
 <a class="wiki_link" href="/Semicomma%20family#Seven%20limit%20children-Orwell">Orwell</a> — so named because 19 steps of <a class="wiki_link" href="/84edo">84edo</a>, or 19\84, is a possible generator — is an excellent 7-limit temperament and an amazing (because of the low complexity of 11) 11-limit temperament. The &quot;perfect twelfth&quot; 3/1 is divided into 7 equal steps. One of these steps represents 7/6; three represent 8/5. It's a member of the <a class="wiki_link" href="/Semicomma%20family">Semicomma family</a>. Alternately, the &quot;fifth harmonic&quot; 5/1 divided into 3 equal steps also makes a good orwell generator, being ~12/7.<br />
<br />
In the 11 limit, two generators are equated to 11/8 (meaning 99/98 is tempered out). This means that three stacked generators makes the <a class="wiki_link" href="/orwell%20tetrad">orwell tetrad</a> 1/1-7/6-11/8-8/5, a chord in which every interval is a (tempered) 11-limit consonance. Other such chords in orwell are the <a class="wiki_link" href="/keenanismic%20chords">keenanismic tetrads</a> and the <a class="wiki_link" href="/swetismic%20chords">swetismic chords</a>.<br />
<br />
Compatible equal temperaments include <a class="wiki_link" href="/22edo">22edo</a>, <a class="wiki_link" href="/31edo">31edo</a>, <a class="wiki_link" href="/53edo">53edo</a>, and <a class="wiki_link" href="/84edo">84edo</a>. Orwell is in better tune in lower limits than higher ones; the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> is <a class="wiki_link" href="/296edo">296edo</a> in the 5-limit, <a class="wiki_link" href="/137edo">137edo</a> in the 7-limit, and <a class="wiki_link" href="/53edo">53edo</a> in the 11-limit. It tempers out the semicomma in the 5-limit, and so belongs to the <a class="wiki_link" href="/semicomma%20family">semicomma family</a>. In the 7-limit it tempers out 225/224, 1728/1715, 2430/2401 and 6144/6125 in the 7-limit, and 99/98, 121/120, 176/175, 385/384 and 540/539 in the 11-limit. By adding 275/273 to the list of commas it can be extended to the 13-limit as <a class="wiki_link" href="/Semicomma%20family#Orwell-13-limit">tridecimal orwell</a>, and by adding instead 66/65, <a class="wiki_link" href="/Semicomma%20family#Winston">winston temperament</a>.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Interval chain"></a><!-- ws:end:WikiTextHeadingRule:2 -->Interval chain</h1>
 

<table class="wiki_table">
    <tr>
        <th>Generators<br />
</th>
        <th>Cents*<br />
</th>
        <th>11-limit ratios<br />
(orwell mapping)<br />
</th>
        <th>13-limit ratios<br />
(orwell mapping)<br />
</th>
        <th>13-limit ratios<br />
(winston mapping)<br />
</th>
        <th>13-limit ratios<br />
(blair mapping)<br />
</th>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td style="text-align: right;">0.00<br />
</td>
        <td style="text-align: left;">1/1<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td style="text-align: right;">271.43<br />
</td>
        <td style="text-align: left;">7/6<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>13/11, 15/13<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td style="text-align: right;">542.85<br />
</td>
        <td style="text-align: left;">11/8, 15/11<br />
</td>
        <td><br />
</td>
        <td>18/13<br />
</td>
        <td>35/26, 39/28<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td style="text-align: right;">814.28<br />
</td>
        <td style="text-align: left;">8/5<br />
</td>
        <td><br />
</td>
        <td>21/13, 52/33<br />
</td>
        <td>13/8<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td style="text-align: right;">1085.71<br />
</td>
        <td style="text-align: left;">15/8, 28/15<br />
</td>
        <td><br />
</td>
        <td>13/7<br />
</td>
        <td>24/13<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td style="text-align: right;">157.13<br />
</td>
        <td style="text-align: left;">12/11, 11/10, 35/32<br />
</td>
        <td><br />
</td>
        <td>13/12<br />
</td>
        <td>14/13<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td style="text-align: right;">428.56<br />
</td>
        <td style="text-align: left;">14/11, 9/7, 32/25<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>13/10, 33/26<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td style="text-align: right;">699.98<br />
</td>
        <td style="text-align: left;">3/2<br />
</td>
        <td><br />
</td>
        <td>52/35<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td style="text-align: right;">971.41<br />
</td>
        <td style="text-align: left;">7/4<br />
</td>
        <td><br />
</td>
        <td>26/15<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td style="text-align: right;">42.84<br />
</td>
        <td style="text-align: left;">49/48, 36/35, 33/32<br />
</td>
        <td>40/39<br />
</td>
        <td>27/26<br />
</td>
        <td>26/25<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td style="text-align: right;">314.26<br />
</td>
        <td style="text-align: left;">6/5<br />
</td>
        <td><br />
</td>
        <td>13/11<br />
</td>
        <td>39/32<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td style="text-align: right;">585.69<br />
</td>
        <td style="text-align: left;">7/5<br />
</td>
        <td><br />
</td>
        <td>39/28<br />
</td>
        <td>18/13<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td style="text-align: right;">857.12<br />
</td>
        <td style="text-align: left;">18/11<br />
</td>
        <td>64/39<br />
</td>
        <td>13/8<br />
</td>
        <td>21/13<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td style="text-align: right;">1128.54<br />
</td>
        <td style="text-align: left;">21/11, 27/14, 48/25<br />
</td>
        <td>25/13<br />
</td>
        <td><br />
</td>
        <td>39/20<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td style="text-align: right;">199.97<br />
</td>
        <td style="text-align: left;">9/8, 28/25<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td style="text-align: right;">471.40<br />
</td>
        <td style="text-align: left;">21/16<br />
</td>
        <td><br />
</td>
        <td>13/10<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td style="text-align: right;">742.82<br />
</td>
        <td style="text-align: left;">49/32, 54/35<br />
</td>
        <td>20/13<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td style="text-align: right;">1014.25<br />
</td>
        <td style="text-align: left;">9/5<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td style="text-align: right;">85.67<br />
</td>
        <td style="text-align: left;">21/20<br />
</td>
        <td><br />
</td>
        <td>26/25<br />
</td>
        <td>27/26<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td style="text-align: right;">357.10<br />
</td>
        <td style="text-align: left;">27/22, 49/40<br />
</td>
        <td>16/13<br />
</td>
        <td>39/32<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td style="text-align: right;">628.52<br />
</td>
        <td>36/25<br />
</td>
        <td>56/39<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td style="text-align: right;">899.95<br />
</td>
        <td>27/16, 42/25<br />
</td>
        <td>22/13<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td style="text-align: right;">1171.38<br />
</td>
        <td>63/32<br />
</td>
        <td><br />
</td>
        <td>39/20<br />
</td>
        <td><br />
</td>
    </tr>
</table>

*in 11-limit POTE tuning<br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Spectrum of Orwell Tunings by Eigenmonzos"></a><!-- ws:end:WikiTextHeadingRule:4 -->Spectrum of Orwell Tunings by Eigenmonzos</h1>
 

<table class="wiki_table">
    <tr>
        <th>Eigenmonzo<br />
</th>
        <th>Subminor Third<br />
</th>
    </tr>
    <tr>
        <td>7/6<br />
</td>
        <td>266.871<br />
</td>
    </tr>
    <tr>
        <td>14/11<br />
</td>
        <td>269.585<br />
</td>
    </tr>
    <tr>
        <td>12/11<br />
</td>
        <td>270.127<br />
</td>
    </tr>
    <tr>
        <td>11/9<br />
</td>
        <td>271.049<br />
</td>
    </tr>
    <tr>
        <td>8/7<br />
</td>
        <td>271.103<br />
</td>
    </tr>
    <tr>
        <td>7/5<br />
</td>
        <td>271.137 (7 and 11 limit minimx)<br />
</td>
    </tr>
    <tr>
        <td>5/4<br />
</td>
        <td>271.229<br />
</td>
    </tr>
    <tr>
        <td>6/5<br />
</td>
        <td>271.564 (5 limit minimax)<br />
</td>
    </tr>
    <tr>
        <td>10/9<br />
</td>
        <td>271.623 (9 limit minimax)<br />
</td>
    </tr>
    <tr>
        <td>4/3<br />
</td>
        <td>271.708<br />
</td>
    </tr>
    <tr>
        <td>9/7<br />
</td>
        <td>272.514<br />
</td>
    </tr>
    <tr>
        <td>11/10<br />
</td>
        <td>273.001<br />
</td>
    </tr>
    <tr>
        <td>11/8<br />
</td>
        <td>275.659<br />
</td>
    </tr>
</table>

[6 5/2] eigenmonzos: <a class="wiki_link" href="/orwellwoo13">orwellwoo13</a> <a class="wiki_link" href="/orwellwoo22">orwellwoo22</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="MOSes"></a><!-- ws:end:WikiTextHeadingRule:6 -->MOSes</h1>
 <!-- ws:start:WikiTextHeadingRule:8:&lt;h2&gt; --><h2 id="toc4"><a name="MOSes-9-note (LsLsLsLss, proper)"></a><!-- ws:end:WikiTextHeadingRule:8 -->9-note (LsLsLsLss, proper)</h2>
 

<table class="wiki_table">
    <tr>
        <td>Small (&quot;minor&quot;) interval<br />
</td>
        <td>114.29<br />
</td>
        <td>228.59<br />
</td>
        <td>385.72<br />
</td>
        <td>500.02<br />
</td>
        <td>657.15<br />
</td>
        <td>771.44<br />
</td>
        <td>928.57<br />
</td>
        <td>1042.87<br />
</td>
    </tr>
    <tr>
        <td>JI intervals represented<br />
</td>
        <td>15/14~16/15<br />
</td>
        <td>8/7<br />
</td>
        <td>5/4<br />
</td>
        <td>4/3<br />
</td>
        <td>16/11<br />
</td>
        <td>14/9~11/7<br />
</td>
        <td>12/7<br />
</td>
        <td>11/6<br />
</td>
    </tr>
    <tr>
        <td>Large (&quot;major&quot;) interval<br />
</td>
        <td>157.13<br />
</td>
        <td>271.43<br />
</td>
        <td>428.56<br />
</td>
        <td>542.85<br />
</td>
        <td>699.98<br />
</td>
        <td>814.28<br />
</td>
        <td>971.41<br />
</td>
        <td>1085.71<br />
</td>
    </tr>
    <tr>
        <td>JI intervals represented<br />
</td>
        <td>12/11~11/10<br />
</td>
        <td>7/6<br />
</td>
        <td>14/11~9/7<br />
</td>
        <td>11/8<br />
</td>
        <td>3/2<br />
</td>
        <td>8/5<br />
</td>
        <td>7/4<br />
</td>
        <td>15/8<br />
</td>
    </tr>
</table>

<!-- ws:start:WikiTextHeadingRule:10:&lt;h2&gt; --><h2 id="toc5"><a name="MOSes-13-note (LLLsLLsLLsLLs, improper)"></a><!-- ws:end:WikiTextHeadingRule:10 -->13-note (LLLsLLsLLsLLs, improper)</h2>
 

<table class="wiki_table">
    <tr>
        <td>Small (&quot;minor&quot;) interval<br />
</td>
        <td>42.84<br />
</td>
        <td>157.13<br />
</td>
        <td>271.43<br />
</td>
        <td>314.26<br />
</td>
        <td>428.56<br />
</td>
        <td>542.85<br />
</td>
        <td>585.69<br />
</td>
        <td>699.98<br />
</td>
        <td>814.28<br />
</td>
        <td>857<br />
</td>
        <td>971.41<br />
</td>
        <td>1085.71<br />
</td>
    </tr>
    <tr>
        <td>JI intervals represented<br />
</td>
        <td><br />
</td>
        <td>12/11~11/10<br />
</td>
        <td>7/6<br />
</td>
        <td>6/5<br />
</td>
        <td>14/11~9/7<br />
</td>
        <td>11/8<br />
</td>
        <td>7/5<br />
</td>
        <td>3/2<br />
</td>
        <td>8/5<br />
</td>
        <td>18/11<br />
</td>
        <td>7/4<br />
</td>
        <td>15/8<br />
</td>
    </tr>
    <tr>
        <td>Large (&quot;major&quot;) interval<br />
</td>
        <td>114.29<br />
</td>
        <td>228.59<br />
</td>
        <td>342.88<br />
</td>
        <td>385.72<br />
</td>
        <td>500.02<br />
</td>
        <td>614.31<br />
</td>
        <td>657.15<br />
</td>
        <td>771.44<br />
</td>
        <td>885.74<br />
</td>
        <td>928.57<br />
</td>
        <td>1042.87<br />
</td>
        <td>1157.16<br />
</td>
    </tr>
    <tr>
        <td>JI intervals represented<br />
</td>
        <td>15/14~16/15<br />
</td>
        <td>8/7<br />
</td>
        <td>11/9<br />
</td>
        <td>5/4<br />
</td>
        <td>4/3<br />
</td>
        <td>10/7<br />
</td>
        <td>16/11<br />
</td>
        <td>14/9~11/7<br />
</td>
        <td>5/3<br />
</td>
        <td>12/7<br />
</td>
        <td>11/6<br />
</td>
        <td><br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:12:&lt;h1&gt; --><h1 id="toc6"><a name="Planar temperaments"></a><!-- ws:end:WikiTextHeadingRule:12 -->Planar temperaments</h1>
 Following is a list of rank three, or planar temperaments that are supported by orwell temperament.<br />


<table class="wiki_table">
    <tr>
        <th colspan="2">Planar temperament<br />
</th>
        <th colspan="4">Among others, planar temperament is also supported by...<br />
</th>
    </tr>
    <tr>
        <th>7-limit<br />
</th>
        <th>11-limit<br />
extension<br />
</th>
        <th>9tet<br />
</th>
        <th>22tet<br />
</th>
        <th>31tet<br />
</th>
        <th>53tet<br />
</th>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Marvel%20family">marvel</a><br />
</td>
        <td><br />
</td>
        <td>negri, septimin, august,<br />
amavil, enneaportent<br />
</td>
        <td>magic, pajara, wizard, porky<br />
</td>
        <td>meantone, miracle, tritonic,<br />
slender, würschmidt<br />
</td>
        <td>garibaldi, catakleismic<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>marvel<br />
</td>
        <td>negri, septimin, enneaportent<br />
</td>
        <td>magic, pajarous, wizard<br />
</td>
        <td>meanpop, miracle, tritoni, slender<br />
</td>
        <td>garibaldi, catakleismic<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>minerva<br />
</td>
        <td>negric, august, amavil<br />
</td>
        <td>telepathy, pajara<br />
</td>
        <td>meantone, revelation, würschmidt<br />
</td>
        <td>cataclysmic<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>artemis*<br />
</td>
        <td>wilsec<br />
</td>
        <td>divination, hemipaj, porky<br />
</td>
        <td>migration, oracle, tritonic<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Porwell%20family">hewuermity</a><br />
</td>
        <td><br />
</td>
        <td>triforce, armodue,<br />
twothirdtonic<br />
</td>
        <td>porcupine, astrology, shrutar,<br />
hendecatonic, septisuperfourth<br />
</td>
        <td>hemiwürschmidt, valentine,<br />
mohajira, grendel<br />
</td>
        <td>amity, hemischis,<br />
hemikleismic<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>zeus<br />
</td>
        <td>triforce, armodue,<br />
twothirdtonic<br />
</td>
        <td>porcupine, astrology, shrutar,<br />
hendecatonic<br />
</td>
        <td>hemiwur, valentine, mohajira<br />
</td>
        <td>hitchcock,<br />
hemikleismic<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>jupiter<br />
</td>
        <td><br />
</td>
        <td>septisuperfourth<br />
</td>
        <td>hemiwürschmidt, grendel<br />
</td>
        <td>amity, hemischis<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Orwellismic%20family">orwellian</a><br />
</td>
        <td><br />
</td>
        <td>beep, secund, infraorwell,<br />
niner<br />
</td>
        <td>superpyth, doublewide,<br />
echidna<br />
</td>
        <td>myna, mothra, sentinel,<br />
semisept<br />
</td>
        <td>quartonic, buzzard<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>orwellian<br />
</td>
        <td>pentoid, secund<br />
</td>
        <td>suprapyth, doublewide<br />
</td>
        <td>myno, mothra, sentinel<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>guanyin<br />
</td>
        <td>infraorwell, niner<br />
</td>
        <td>superpyth, fleetwood, echidna<br />
</td>
        <td>myna, mosura, semisept<br />
</td>
        <td>quartonic, buzzard<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Nuwell%20family">nuwell</a><br />
</td>
        <td><br />
</td>
        <td>progression, superpelog<br />
</td>
        <td>quasisuper, hedgehog<br />
</td>
        <td>squares, nusecond<br />
</td>
        <td>tricot, hamity<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>big brother<br />
</td>
        <td>progression, superpelog<br />
</td>
        <td>quasisupra, hedgehog<br />
</td>
        <td>squares, nusecond<br />
</td>
        <td>tricot, hamity<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Horwell%20family">horwell</a><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>bisupermajor, escaped,<br />
fifthplus<br />
</td>
        <td>hemithirds, worschmidt,<br />
tertiaseptal<br />
</td>
        <td>countercata, pontiac<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>zelda<br />
</td>
        <td><br />
</td>
        <td>bisupermajor, sensa<br />
</td>
        <td>hemithirds, worschmidt, tertia<br />
</td>
        <td>countercata<br />
</td>
    </tr>
</table>

*weak extension (one or more generators from the parent temperament are split)<br />
<br />
<!-- ws:start:WikiTextHeadingRule:14:&lt;h1&gt; --><h1 id="toc7"><a name="Chords of orwell"></a><!-- ws:end:WikiTextHeadingRule:14 --><a class="wiki_link" href="/Chords%20of%20orwell">Chords of orwell</a></h1>
 <br />
<!-- ws:start:WikiTextHeadingRule:16:&lt;h1&gt; --><h1 id="toc8"><a name="MOS transversals"></a><!-- ws:end:WikiTextHeadingRule:16 -->MOS transversals</h1>
 <a class="wiki_link" href="/orwell13trans">orwell13trans</a><br />
<a class="wiki_link" href="/orwell22trans">orwell22trans</a><br />
<a class="wiki_link" href="/orwell31trans">orwell31trans</a><br />
<a class="wiki_link" href="/orwell13trans57">orwell13trans57</a><br />
<a class="wiki_link" href="/orwell22trans57">orwell22trans57</a><br />
<a class="wiki_link" href="/orwell31trans57">orwell31trans57</a><br />
<br />
<br />
<!-- ws:start:WikiTextHeadingRule:18:&lt;h1&gt; --><h1 id="toc9"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:18 -->Music</h1>
 <a class="wiki_link_ext" href="http://www.archive.org/details/TrioInOrwell" rel="nofollow">Trio in Orwell</a> <a class="wiki_link_ext" href="http://www.archive.org/download/TrioInOrwell/TrioInOrwell.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Gene%20Ward%20Smith">Gene Ward Smith</a><br />
<a class="wiki_link" href="/earwig">earwig</a>, <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/earwig.mp3" rel="nofollow">play</a>,<br />
<a class="wiki_link" href="/Technical%20Notes%20for%20Newbeams#Track%20notes:-Elf%20Dine%20on%20Ho%20Ho">Elf Dine on Ho Ho</a>, <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2004%20Hypnocloudsmack%201.mp3" rel="nofollow">play</a>,<br />
<a class="wiki_link" href="/Technical%20Notes%20for%20Newbeams#Track%20notes:-Spun">Spun</a>, <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2008%20Spun.mp3" rel="nofollow">play</a>,<br />
<a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+onedropofrain.mp3" rel="nofollow">one drop of rain</a>, <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+onedropofrain.mp3" rel="nofollow">play</a>,<br />
<a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+ivecomewithabucketofroses.mp3" rel="nofollow">i've come with a bucket of roses</a> and <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/andrewheathwaite+myownhouse.mp3" rel="nofollow">my own house</a> by <a class="wiki_link" href="/Andrew%20Heathwaite">Andrew Heathwaite</a><br />
<a class="wiki_link_ext" href="http://micro.soonlabel.com/orwell/daily20100721-gpo-owellian-cameras.mp3" rel="nofollow">Orwellian Cameras</a> by <a class="wiki_link" href="/Chris%20Vaisvil">Chris Vaisvil</a><br />
<a class="wiki_link_ext" href="http://archive.org/download/TunicataAndFugue/TunicataAndFugueVer2.mp3" rel="nofollow">Tunicata and Fugue</a> by <a class="wiki_link_ext" href="http://www.archive.org/details/TunicataAndFugue" rel="nofollow">Peter Kosmorsky</a><br />
<a class="wiki_link_ext" href="https://soundcloud.com/tarkan-grood/mountain-village-tarkangrood" rel="nofollow">Mountain Villiage</a> <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Grood/Mountain_Village_TarkanGrood.mp3" rel="nofollow">play</a> by Tarkan Grood<br />
<a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/transformers/swing-orwell9.mp3" rel="nofollow">Swing in Orwell-9</a><br />
<a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Roncevaux/Schizo_Blue__22_EDO_Orwell__first_mix_by_Roncevaux_on_SoundCloud___Hear_the_world_s_sounds.mp3" rel="nofollow">Schizo Blue</a> by <a class="wiki_link_ext" href="https://soundcloud.com/lois-lancaster/schizo-blue-22-edo-orwell" rel="nofollow">Roncevaux (Löis Lancaster)</a><br />
<a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Roncevaux/Sejaliscos_by_Roncevaux_on_SoundCloud___Hear_the_world_s_sounds.mp3" rel="nofollow">Sejaliscos</a> by <a class="wiki_link_ext" href="https://soundcloud.com/lois-lancaster/sejaliscos" rel="nofollow">Roncevaux</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:20:&lt;h1&gt; --><h1 id="toc10"><a name="Keyboards"></a><!-- ws:end:WikiTextHeadingRule:20 -->Keyboards</h1>
 If only there were a way to make these interactive, that would be pretty nifty.<br />
<!-- ws:start:WikiTextLocalImageRule:876:&lt;img src=&quot;/file/view/Orwell_13.png/288210264/1023x292/Orwell_13.png&quot; alt=&quot;&quot; title=&quot;&quot; style=&quot;height: 292px; width: 1023px;&quot; /&gt; --><img src="/file/view/Orwell_13.png/288210264/1023x292/Orwell_13.png" alt="Orwell_13.png" title="Orwell_13.png" style="height: 292px; width: 1023px;" /><!-- ws:end:WikiTextLocalImageRule:876 --><br />
<!-- ws:start:WikiTextHeadingRule:22:&lt;h1&gt; --><h1 id="toc11"><!-- ws:end:WikiTextHeadingRule:22 --><!-- ws:start:WikiTextLocalImageRule:877:&lt;img src=&quot;/file/view/Orwell_22.png/288210350/1023x292/Orwell_22.png&quot; alt=&quot;&quot; title=&quot;&quot; style=&quot;height: 292px; width: 1023px;&quot; /&gt; --><img src="/file/view/Orwell_22.png/288210350/1023x292/Orwell_22.png" alt="Orwell_22.png" title="Orwell_22.png" style="height: 292px; width: 1023px;" /><!-- ws:end:WikiTextLocalImageRule:877 --></h1>
 <!-- ws:start:WikiTextLocalImageRule:878:&lt;img src=&quot;/file/view/orwell13_axis49.png/302248228/orwell13_axis49.png&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/orwell13_axis49.png/302248228/orwell13_axis49.png" alt="orwell13_axis49.png" title="orwell13_axis49.png" /><!-- ws:end:WikiTextLocalImageRule:878 --><br />
See: <a class="wiki_link" href="/Orwell%20on%20an%20Isomorphic%20Keyboard">Orwell on an Isomorphic Keyboard</a></body></html>