Quick link

User:BudjarnLambeth/Draft related tunings section

Title1

Octave stretch or compression

What follows is a comparison of stretched- and compressed-octave 33edo tunings.

115ed11
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.

Approximation of harmonics in EDONOI
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -8.8 +11.3 -17.5 -6.7 +2.5 -11.7 +9.8 -13.6 -15.5 +0.0 -6.2
Relative (%) -24.2 +31.2 -48.5 -18.7 +7.0 -32.3 +27.3 -37.6 -42.9 +0.0 -17.3
Steps
(reduced)
33
(33)
53
(53)
66
(66)
77
(77)
86
(86)
93
(93)
100
(100)
105
(105)
110
(110)
115
(0)
119
(4)
Approximation of harmonics in EDONOI (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -0.4 +15.7 +4.5 +1.1 +4.4 +13.8 -7.6 +11.9 -0.4 -8.8 -13.5 -15.0
Relative (%) -1.2 +43.4 +12.5 +3.0 +12.3 +38.1 -21.2 +32.8 -1.1 -24.2 -37.4 -41.5
Steps
(reduced)
123
(8)
127
(12)
130
(15)
133
(18)
136
(21)
139
(24)
141
(26)
144
(29)
146
(31)
148
(33)
150
(35)
152
(37)
123ed13 / 1ed47/46 (identical within <0.1 ¢)
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.

Approximation of harmonics in EDONOI
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -8.6 +11.4 -17.3 -6.5 +2.8 -11.4 +10.2 -13.2 -15.1 +0.4 -5.8
Relative (%) -23.9 +31.7 -47.9 -17.9 +7.8 -31.4 +28.2 -36.6 -41.9 +1.1 -16.2
Steps
(reduced)
33
(33)
53
(53)
66
(66)
77
(77)
86
(86)
93
(93)
100
(100)
105
(105)
110
(110)
115
(115)
119
(119)
Approximation of harmonics in EDONOI (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +0.0 +16.1 +5.0 +1.5 +4.9 +14.2 -7.2 +12.4 +0.1 -8.2 -13.0 -14.5
Relative (%) +0.0 +44.6 +13.8 +4.3 +13.6 +39.5 -19.8 +34.2 +0.2 -22.8 -36.0 -40.1
Steps
(reduced)
123
(0)
127
(4)
130
(7)
133
(10)
136
(13)
139
(16)
141
(18)
144
(21)
146
(23)
148
(25)
150
(27)
152
(29)
77ed5 (139zpi's octave differs by only 0.2 ¢)
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.

Approximation of harmonics in EDONOI
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -5.9 +15.9 -11.7 +0.0 +10.0 -3.5 -17.6 -4.4 -5.9 +10.1 +4.2
Relative (%) -16.2 +43.9 -32.4 +0.0 +27.7 -9.8 -48.6 -12.1 -16.2 +27.8 +11.5
Steps
(reduced)
33
(33)
53
(53)
66
(66)
77
(0)
86
(9)
93
(16)
99
(22)
105
(28)
110
(33)
115
(38)
119
(42)
Approximation of harmonics in EDONOI (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +10.3 -9.4 +15.9 +12.7 +16.3 -10.3 +4.7 -11.7 +12.4 +4.2 -0.4 -1.7
Relative (%) +28.6 -26.0 +43.9 +35.2 +45.1 -28.3 +13.0 -32.4 +34.2 +11.6 -1.1 -4.7
Steps
(reduced)
123
(46)
126
(49)
130
(53)
133
(56)
136
(59)
138
(61)
141
(64)
143
(66)
146
(69)
148
(71)
150
(73)
152
(75)
93ed7 (optimised for dual-fifths)
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.

Approximation of harmonics in EDONOI
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -4.6 +17.9 -9.2 +2.9 +13.3 +0.0 -13.8 -0.4 -1.7 +14.4 +8.7
Relative (%) -12.7 +49.5 -25.5 +8.1 +36.7 +0.0 -38.2 -1.1 -4.6 +39.8 +24.0
Steps
(reduced)
33
(33)
53
(53)
66
(66)
77
(77)
86
(86)
93
(0)
99
(6)
105
(12)
110
(17)
115
(22)
119
(26)
Approximation of harmonics in EDONOI (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +15.0 -4.6 -15.4 +17.8 -14.7 -5.0 +10.1 -6.3 +17.9 +9.8 +5.3 +4.1
Relative (%) +41.5 -12.7 -42.5 +49.1 -40.6 -13.8 +27.8 -17.4 +49.5 +27.1 +14.7 +11.3
Steps
(reduced)
123
(30)
126
(33)
129
(36)
133
(40)
135
(42)
138
(45)
141
(48)
143
(50)
146
(53)
148
(55)
150
(57)
152
(59)
33edo
  • Step size: 36.363 ¢, octave size: NNN ¢

Pure-octaves EDONAME approximates all harmonics up to 16 within NNN ¢.

Approximation of harmonics in EDONAME
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.0 -11.0 +0.0 +13.7 -11.0 +13.0 +0.0 +14.3 +13.7 -5.9 -11.0
Relative (%) +0.0 -30.4 +0.0 +37.6 -30.4 +35.7 +0.0 +39.2 +37.6 -16.1 -30.4
Steps
(reduced)
33
(0)
52
(19)
66
(0)
77
(11)
85
(19)
93
(27)
99
(0)
105
(6)
110
(11)
114
(15)
118
(19)
Approximation of harmonics in EDONAME (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -4.2 +13.0 +2.6 +0.0 +4.1 +14.3 -6.6 +13.7 +1.9 -5.9 -10.1 -11.0
Relative (%) -11.5 +35.7 +7.3 +0.0 +11.4 +39.2 -18.2 +37.6 +5.4 -16.1 -27.8 -30.4
Steps
(reduced)
122
(23)
126
(27)
129
(30)
132
(0)
135
(3)
138
(6)
140
(8)
143
(11)
145
(13)
147
(15)
149
(17)
151
(19)
33et, 13-limit WE tuning (36.357c)
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its SUBGROUP WE tuning and SUBGROUP TE tuning both do this.

Approximation of harmonics in ETNAME, SUBGROUP WE tuning
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -0.2 -11.4 -0.4 +13.2 -11.6 +12.4 -0.7 +13.6 +13.0 -6.6 -11.8
Relative (%) -0.6 -31.3 -1.2 +36.2 -31.9 +34.0 -1.8 +37.3 +35.6 -18.2 -32.5
Step 33 52 66 77 85 93 99 105 110 114 118
Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -5.0 +12.2 +1.8 -0.9 +3.2 +13.4 -7.5 +12.7 +1.0 -6.8 -11.1 -12.0
Relative (%) -13.7 +33.4 +4.9 -2.4 +8.9 +36.7 -20.7 +35.0 +2.7 -18.8 -30.5 -33.1
Step 122 126 129 132 135 138 140 143 145 147 149 151
138zpi (36.394c) (122ed13's octave differs by only 0.1 ¢)
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning ZPINAME does this.

Approximation of harmonics in ZPINAME
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.0 -9.5 +2.0 +16.0 -8.5 +15.8 +3.0 +17.5 +17.0 -2.4 -7.5
Relative (%) +2.8 -26.0 +5.5 +44.0 -23.3 +43.5 +8.3 +48.0 +46.8 -6.6 -20.5
Step 33 52 66 77 85 93 99 105 110 114 118
Approximation of harmonics in ZPINAME (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -0.5 +16.8 +6.6 +4.0 +8.2 -17.9 -2.4 +18.0 +6.3 -1.4 -5.6 -6.5
Relative (%) -1.3 +46.2 +18.0 +11.0 +22.6 -49.3 -6.5 +49.5 +17.4 -3.8 -15.3 -17.8
Step 122 126 129 132 135 137 140 143 145 147 149 151
114ed11
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.

Approximation of harmonics in EDONOI
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.7 -8.4 +3.4 +17.6 -6.7 +17.8 +5.1 -16.7 -17.1 +0.0 -5.0
Relative (%) +4.7 -23.0 +9.3 +48.5 -18.3 +48.8 +14.0 -46.0 -46.9 +0.0 -13.7
Steps
(reduced)
33
(33)
52
(52)
66
(66)
77
(77)
85
(85)
93
(93)
99
(99)
104
(104)
109
(109)
114
(0)
118
(4)
Approximation of harmonics in EDONOI (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +2.1 -16.9 +9.3 +6.8 +11.1 -15.0 +0.6 -15.4 +9.4 +1.7 -2.4 -3.3
Relative (%) +5.8 -46.5 +25.5 +18.6 +30.4 -41.3 +1.6 -42.2 +25.8 +4.7 -6.7 -9.0
Steps
(reduced)
122
(8)
125
(11)
129
(15)
132
(18)
135
(21)
137
(23)
140
(26)
142
(28)
145
(31)
147
(33)
149
(35)
151
(37)
52ed13
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.

Approximation of harmonics in EDONOI
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -4.5 -23.3 -8.9 +31.7 -27.7 -38.4 -13.4 +38.9 +27.2 +33.0 -32.2
Relative (%) -5.2 -27.3 -10.5 +37.1 -32.5 -45.0 -15.7 +45.5 +31.9 +38.7 -37.7
Steps
(reduced)
14
(14)
22
(22)
28
(28)
33
(33)
36
(36)
39
(39)
42
(42)
45
(45)
47
(47)
49
(49)
50
(50)
Approximation of harmonics in EDONOI (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +0.0 +42.5 +8.4 -17.9 -37.5 +34.4 +26.2 +22.8 +23.7 +28.6 +37.0 -36.7
Relative (%) +0.0 +49.8 +9.9 -21.0 -43.9 +40.3 +30.6 +26.7 +27.7 +33.4 +43.3 -43.0
Steps
(reduced)
52
(0)
54
(2)
55
(3)
56
(4)
57
(5)
59
(7)
60
(8)
61
(9)
62
(10)
63
(11)
64
(12)
64
(12)
92ed7 (137zpi's octave differs by only 0.3 ¢)
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.

Approximation of harmonics in EDONOI
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +8.4 +2.2 +16.8 -3.4 +10.5 +0.0 -11.5 +4.3 +5.0 -13.5 -17.7
Relative (%) +22.9 +5.9 +45.8 -9.2 +28.8 +0.0 -31.3 +11.8 +13.7 -36.9 -48.3
Steps
(reduced)
33
(33)
52
(52)
66
(66)
76
(76)
85
(85)
92
(0)
98
(6)
104
(12)
109
(17)
113
(21)
117
(25)
Approximation of harmonics in EDONOI (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -9.8 +8.4 -1.2 -3.1 +1.8 +12.7 -7.7 +13.4 +2.2 -5.1 -8.9 -9.3
Relative (%) -26.7 +22.9 -3.3 -8.4 +5.0 +34.7 -20.9 +36.6 +5.9 -14.0 -24.2 -25.4
Steps
(reduced)
121
(29)
125
(33)
128
(36)
131
(39)
134
(42)
137
(45)
139
(47)
142
(50)
144
(52)
146
(54)
148
(56)
150
(58)
76ed5
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.

Approximation of harmonics in EDONOI
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +9.8 +4.5 -17.0 +0.0 +14.3 +4.1 -7.1 +8.9 +9.8 -8.5 -12.5
Relative (%) +26.9 +12.2 -46.3 +0.0 +39.1 +11.1 -19.4 +24.4 +26.9 -23.2 -34.1
Steps
(reduced)
33
(33)
52
(52)
65
(65)
76
(0)
85
(9)
92
(16)
98
(22)
104
(28)
109
(33)
113
(37)
117
(41)
Approximation of harmonics in EDONOI (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -4.4 +13.9 +4.5 +2.7 +7.8 -17.9 -1.5 -17.0 +8.6 +1.3 -2.3 -2.7
Relative (%) -12.1 +38.0 +12.2 +7.4 +21.2 -48.8 -4.1 -46.3 +23.3 +3.6 -6.3 -7.2
Steps
(reduced)
121
(45)
125
(49)
128
(52)
131
(55)
134
(58)
136
(60)
139
(63)
141
(65)
144
(68)
146
(70)
148
(72)
150
(74)

Title2

Lab

Place holder








Approximation of prime harmonics in 1ed300c
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0 -102 -86 -69 +49 +59 -105 +2 -28 -130 +55
Relative (%) +0.0 -34.0 -28.8 -22.9 +16.2 +19.8 -35.0 +0.8 -9.4 -43.2 +18.3
Step 4 6 9 11 14 15 16 17 18 19 20


Approximation of prime harmonics in 140ed12
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -1.6 +3.2 +10.0 +11.3 -3.0 +15.1 +11.6 +3.4 +10.6 +8.8 -14.5
Relative (%) -5.2 +10.4 +32.4 +36.7 -9.8 +49.0 +37.6 +11.0 +34.6 +28.6 -47.1
Steps
(reduced)
39
(39)
62
(62)
91
(91)
110
(110)
135
(135)
145
(5)
160
(20)
166
(26)
177
(37)
190
(50)
193
(53)

Possible tunings to be used on each page

You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming.

(Used https://x31eq.com/temper-pyscript/net.html, used WE instead of TE cause it kept defaulting to WE and I kept not remembering to switch it)

High-priority

39edo

  • 171zpi (30.973c) (optimised for dual-fifths use)
  • 13-limit WE (30.757c) (octave of 135ed11 differs by only 0.2 ¢)
  • 101ed6 (octave of 172zpi differs by only 0.4 ¢)
  • 173zpi (30.672c) (octave of 62edt differs by only 0.2 ¢)
  • 110ed7 (octave of 145ed13 differs by only 0.1 ¢)
  • 91ed5

45edo

  • 209zpi (26.550)
  • 13-limit WE (26.695c)
  • 161ed12
  • 116ed6 (octave identical to 126ed7 within 0.1 ¢)
  • 7-limit WE (26.745c)
  • 207zpi (26.762)
  • 71edt (octave identical to 155ed11 within 0.3 ¢)

54edo

  • 139ed6 (octave is identical to 262zpi within 0.2 ¢)
  • 151ed7
  • 193ed12
  • 263zpi (22.243c)
  • 13-limit WE (22.198c) (octave is identical to 187ed11 within 0.1 ¢)
  • 264zpi (22.175c) (octave is identical to 194ed12 within 0.01 ¢)
  • 152ed7
  • 140ed6
  • 126ed5 (octave is identical to 86edt within 0.1 ¢)

64edo

  • 179ed7 (octave is identical to 326zpi within 0.3 ¢)
  • 165ed6
  • 229ed12 (octave is identical to 221ed11 within 0.1 ¢)
  • 327zpi (18.767c)
  • 11-limit WE (18.755c)

pure octaves 64edo (octave is identical to 13-limit WE within 0.13 ¢

  • 328zpi (18.721c)
  • 180ed7
  • 230ed12
  • 149ed5

33edo (reduce # of edonoi)

  • 76ed5
  • 92ed7 (137zpi's octave differs by only 0.3 ¢)
  • 52ed13
  • 114ed11
  • 138zpi (36.394c) (122ed13's octave differs by only 0.1 ¢)
  • 13-limit WE (36.357c)
  • 93ed7 (optimised for dual-fifths)
  • 77ed5 (139zpi's octave differs by only 0.2 ¢)
  • 123ed13 / 1ed47/46 (identical within <0.1 ¢)
  • 115ed11

42edo (reduce # of edonoi)

  • 108ed6 (octave is identical to 97ed5 within 0.1 ¢)
  • 189zpi (28.689c)
  • 150ed12
  • 145ed11

190zpi's octave is within 0.05 ¢ of pure-octaves 42edo

  • 118ed7
  • 13-limit WE (28.534c)
  • 151ed12 (octave is identical to 7-limit WE within 0.3 ¢)
  • 109ed6
  • 191zpi (28.444c)
  • 67edt

59edo (reduce # of edonoi or zpi)

  • 152ed6
  • 294zpi (20.399c)
  • 211ed12
  • 295zpi (20.342c)

pure octaves 59edo octave is identical to 137ed5 within 0.05 ¢

  • 13-limit WE (20.320c)
  • 7-limit WE (20.301c)
  • 166ed7
  • 212ed12
  • 296zpi (20.282c)
  • 153ed6
Medium priority

118edo (choose ZPIS)

Approximation of harmonics in 118edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.00 -0.26 +0.00 +0.13 -0.26 -2.72 +0.00 -0.52 +0.13 -2.17 -0.26 +3.54
Relative (%) +0.0 -2.6 +0.0 +1.2 -2.6 -26.8 +0.0 -5.1 +1.2 -21.3 -2.6 +34.8
Steps
(reduced)
118
(0)
187
(69)
236
(0)
274
(38)
305
(69)
331
(95)
354
(0)
374
(20)
392
(38)
408
(54)
423
(69)
437
(83)
  • 187edt
  • 69edf
  • 13-limit WE (10.171c)
  • Best nearby ZPI(s)

13edo

Approximation of harmonics in 13edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +36.5 +0.0 -17.1 +36.5 -45.7 +0.0 -19.3 -17.1 +2.5 +36.5 -9.8
Relative (%) +0.0 +39.5 +0.0 -18.5 +39.5 -49.6 +0.0 -20.9 -18.5 +2.7 +39.5 -10.6
Steps
(reduced)
13
(0)
21
(8)
26
(0)
30
(4)
34
(8)
36
(10)
39
(0)
41
(2)
43
(4)
45
(6)
47
(8)
48
(9)
  • Main: "13edo and optimal octave stretching"
  • 2.5.11.13 WE (92.483c)
  • 2.5.7.13 WE (92.804c)
  • 2.3 WE (91.405c) (good for opposite 7 mapping)
  • 38zpi (92.531c)

103edo (narrow down edonoi, choose ZPIS)

Approximation of harmonics in 103edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.00 -2.93 +0.00 -1.85 -2.93 -1.84 +0.00 +5.80 -1.85 -3.75 -2.93 -1.69
Relative (%) +0.0 -25.1 +0.0 -15.9 -25.1 -15.8 +0.0 +49.8 -15.9 -32.1 -25.1 -14.5
Steps
(reduced)
103
(0)
163
(60)
206
(0)
239
(33)
266
(60)
289
(83)
309
(0)
327
(18)
342
(33)
356
(47)
369
(60)
381
(72)
  • 163edt
  • 239ed5
  • 266ed6
  • 289ed7
  • 356ed11
  • 369ed12
  • 381ed13
  • 421ed17
  • 466ed23
  • 13-limit WE (11.658c)
  • Best nearby ZPI(s)

111edo (choose ZPIS)

Approximation of harmonics in 111edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.00 +0.75 +0.00 +2.88 +0.75 +4.15 +0.00 +1.50 +2.88 +0.03 +0.75 +2.72
Relative (%) +0.0 +6.9 +0.0 +26.6 +6.9 +38.4 +0.0 +13.8 +26.6 +0.3 +6.9 +25.1
Steps
(reduced)
111
(0)
176
(65)
222
(0)
258
(36)
287
(65)
312
(90)
333
(0)
352
(19)
369
(36)
384
(51)
398
(65)
411
(78)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)
Low priority

104edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

125edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

145edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

152edo

  • 241edt
  • 13-limit WE (7.894c)
  • Best nearby ZPI(s)

159edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

166edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

182edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

198edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

212edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

243edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

247edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)
Optional

25edo

Approximation of harmonics in 25edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 -2.3 +18.0 -8.8 +0.0 -11.9 -2.3 -23.3 +18.0 +23.5
Relative (%) +0.0 +37.6 +0.0 -4.8 +37.6 -18.4 +0.0 -24.8 -4.8 -48.6 +37.6 +48.9
Steps
(reduced)
25
(0)
40
(15)
50
(0)
58
(8)
65
(15)
70
(20)
75
(0)
79
(4)
83
(8)
86
(11)
90
(15)
93
(18)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

26edo

Approximation of harmonics in 26edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -9.6 +0.0 -17.1 -9.6 +0.4 +0.0 -19.3 -17.1 +2.5 -9.6 -9.8
Relative (%) +0.0 -20.9 +0.0 -37.0 -20.9 +0.9 +0.0 -41.8 -37.0 +5.5 -20.9 -21.1
Steps
(reduced)
26
(0)
41
(15)
52
(0)
60
(8)
67
(15)
73
(21)
78
(0)
82
(4)
86
(8)
90
(12)
93
(15)
96
(18)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

29edo

Approximation of harmonics in 29edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +1.5 +0.0 -13.9 +1.5 -17.1 +0.0 +3.0 -13.9 -13.4 +1.5 -12.9
Relative (%) +0.0 +3.6 +0.0 -33.6 +3.6 -41.3 +0.0 +7.2 -33.6 -32.4 +3.6 -31.3
Steps
(reduced)
29
(0)
46
(17)
58
(0)
67
(9)
75
(17)
81
(23)
87
(0)
92
(5)
96
(9)
100
(13)
104
(17)
107
(20)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

30edo

Approximation of harmonics in 30edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 +13.7 +18.0 -8.8 +0.0 -3.9 +13.7 +8.7 +18.0 -0.5
Relative (%) +0.0 +45.1 +0.0 +34.2 +45.1 -22.1 +0.0 -9.8 +34.2 +21.7 +45.1 -1.3
Steps
(reduced)
30
(0)
48
(18)
60
(0)
70
(10)
78
(18)
84
(24)
90
(0)
95
(5)
100
(10)
104
(14)
108
(18)
111
(21)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

34edo

Approximation of harmonics in 34edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +3.9 +0.0 +1.9 +3.9 -15.9 +0.0 +7.9 +1.9 +13.4 +3.9 +6.5
Relative (%) +0.0 +11.1 +0.0 +5.4 +11.1 -45.0 +0.0 +22.3 +5.4 +37.9 +11.1 +18.5
Steps
(reduced)
34
(0)
54
(20)
68
(0)
79
(11)
88
(20)
95
(27)
102
(0)
108
(6)
113
(11)
118
(16)
122
(20)
126
(24)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

35edo

Approximation of harmonics in 35edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -16.2 +0.0 -9.2 -16.2 -8.8 +0.0 +1.8 -9.2 -2.7 -16.2 +16.6
Relative (%) +0.0 -47.4 +0.0 -26.7 -47.4 -25.7 +0.0 +5.3 -26.7 -8.0 -47.4 +48.5
Steps
(reduced)
35
(0)
55
(20)
70
(0)
81
(11)
90
(20)
98
(28)
105
(0)
111
(6)
116
(11)
121
(16)
125
(20)
130
(25)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

36edo

Approximation of harmonics in 36edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -2.0 +0.0 +13.7 -2.0 -2.2 +0.0 -3.9 +13.7 +15.3 -2.0 -7.2
Relative (%) +0.0 -5.9 +0.0 +41.1 -5.9 -6.5 +0.0 -11.7 +41.1 +46.0 -5.9 -21.6
Steps
(reduced)
36
(0)
57
(21)
72
(0)
84
(12)
93
(21)
101
(29)
108
(0)
114
(6)
120
(12)
125
(17)
129
(21)
133
(25)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

37edo

Approximation of harmonics in 37edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +11.6 +0.0 +2.9 +11.6 +4.1 +0.0 -9.3 +2.9 +0.0 +11.6 +2.7
Relative (%) +0.0 +35.6 +0.0 +8.9 +35.6 +12.8 +0.0 -28.7 +8.9 +0.1 +35.6 +8.4
Steps
(reduced)
37
(0)
59
(22)
74
(0)
86
(12)
96
(22)
104
(30)
111
(0)
117
(6)
123
(12)
128
(17)
133
(22)
137
(26)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

9edo

Approximation of harmonics in 9edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -35.3 +0.0 +13.7 -35.3 -35.5 +0.0 +62.8 +13.7 -18.0 -35.3 -40.5
Relative (%) +0.0 -26.5 +0.0 +10.3 -26.5 -26.6 +0.0 +47.1 +10.3 -13.5 -26.5 -30.4
Steps
(reduced)
9
(0)
14
(5)
18
(0)
21
(3)
23
(5)
25
(7)
27
(0)
29
(2)
30
(3)
31
(4)
32
(5)
33
(6)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

10edo

Approximation of harmonics in 10edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 -26.3 +18.0 -8.8 +0.0 +36.1 -26.3 +48.7 +18.0 -0.5
Relative (%) +0.0 +15.0 +0.0 -21.9 +15.0 -7.4 +0.0 +30.1 -21.9 +40.6 +15.0 -0.4
Steps
(reduced)
10
(0)
16
(6)
20
(0)
23
(3)
26
(6)
28
(8)
30
(0)
32
(2)
33
(3)
35
(5)
36
(6)
37
(7)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

11edo

Approximation of harmonics in 11edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -47.4 +0.0 +50.0 -47.4 +13.0 +0.0 +14.3 +50.0 -5.9 -47.4 +32.2
Relative (%) +0.0 -43.5 +0.0 +45.9 -43.5 +11.9 +0.0 +13.1 +45.9 -5.4 -43.5 +29.5
Steps
(reduced)
11
(0)
17
(6)
22
(0)
26
(4)
28
(6)
31
(9)
33
(0)
35
(2)
37
(4)
38
(5)
39
(6)
41
(8)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

15edo

Approximation of harmonics in 15edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 +13.7 +18.0 -8.8 +0.0 +36.1 +13.7 +8.7 +18.0 +39.5
Relative (%) +0.0 +22.6 +0.0 +17.1 +22.6 -11.0 +0.0 +45.1 +17.1 +10.9 +22.6 +49.3
Steps
(reduced)
15
(0)
24
(9)
30
(0)
35
(5)
39
(9)
42
(12)
45
(0)
48
(3)
50
(5)
52
(7)
54
(9)
56
(11)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

18edo

Approximation of harmonics in 18edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +31.4 +0.0 +13.7 +31.4 +31.2 +0.0 -3.9 +13.7 -18.0 +31.4 +26.1
Relative (%) +0.0 +47.1 +0.0 +20.5 +47.1 +46.8 +0.0 -5.9 +20.5 -27.0 +47.1 +39.2
Steps
(reduced)
18
(0)
29
(11)
36
(0)
42
(6)
47
(11)
51
(15)
54
(0)
57
(3)
60
(6)
62
(8)
65
(11)
67
(13)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

48edo

Approximation of harmonics in 48edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -2.0 +0.0 -11.3 -2.0 +6.2 +0.0 -3.9 -11.3 -1.3 -2.0 +9.5
Relative (%) +0.0 -7.8 +0.0 -45.3 -7.8 +24.7 +0.0 -15.6 -45.3 -5.3 -7.8 +37.9
Steps
(reduced)
48
(0)
76
(28)
96
(0)
111
(15)
124
(28)
135
(39)
144
(0)
152
(8)
159
(15)
166
(22)
172
(28)
178
(34)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

5edo

Approximation of harmonics in 5edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0 +18 +0 +94 +18 -9 +0 +36 +94 -71 +18 +119
Relative (%) +0.0 +7.5 +0.0 +39.0 +7.5 -3.7 +0.0 +15.0 +39.0 -29.7 +7.5 +49.8
Steps
(reduced)
5
(0)
8
(3)
10
(0)
12
(2)
13
(3)
14
(4)
15
(0)
16
(1)
17
(2)
17
(2)
18
(3)
19
(4)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

6edo

Approximation of harmonics in 6edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +98.0 +0.0 +13.7 +98.0 +31.2 +0.0 -3.9 +13.7 +48.7 +98.0 -40.5
Relative (%) +0.0 +49.0 +0.0 +6.8 +49.0 +15.6 +0.0 -2.0 +6.8 +24.3 +49.0 -20.3
Steps
(reduced)
6
(0)
10
(4)
12
(0)
14
(2)
16
(4)
17
(5)
18
(0)
19
(1)
20
(2)
21
(3)
22
(4)
22
(4)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

20edo

Approximation of harmonics in 20edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 -26.3 +18.0 -8.8 +0.0 -23.9 -26.3 -11.3 +18.0 -0.5
Relative (%) +0.0 +30.1 +0.0 -43.9 +30.1 -14.7 +0.0 -39.9 -43.9 -18.9 +30.1 -0.9
Steps
(reduced)
20
(0)
32
(12)
40
(0)
46
(6)
52
(12)
56
(16)
60
(0)
63
(3)
66
(6)
69
(9)
72
(12)
74
(14)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

24edo

Approximation of harmonics in 24edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -2.0 +0.0 +13.7 -2.0 -18.8 +0.0 -3.9 +13.7 -1.3 -2.0 +9.5
Relative (%) +0.0 -3.9 +0.0 +27.4 -3.9 -37.7 +0.0 -7.8 +27.4 -2.6 -3.9 +18.9
Steps
(reduced)
24
(0)
38
(14)
48
(0)
56
(8)
62
(14)
67
(19)
72
(0)
76
(4)
80
(8)
83
(11)
86
(14)
89
(17)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

28edo

Approximation of harmonics in 28edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -16.2 +0.0 -0.6 -16.2 +16.9 +0.0 +10.4 -0.6 +5.8 -16.2 +16.6
Relative (%) +0.0 -37.9 +0.0 -1.4 -37.9 +39.4 +0.0 +24.2 -1.4 +13.6 -37.9 +38.8
Steps
(reduced)
28
(0)
44
(16)
56
(0)
65
(9)
72
(16)
79
(23)
84
(0)
89
(5)
93
(9)
97
(13)
100
(16)
104
(20)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)