5407372813edo

Revision as of 13:24, 21 February 2025 by ArrowHead294 (talk | contribs) (Really large number that is mostly of theoretical interest)
← 5407372812edo 5407372813edo 5407372814edo →
Prime factorization 5407372813 (prime)
Step size 2.21919e-07 ¢ 
Fifth 3163110323\5407372813 (701.955 ¢)
Semitones (A1:m2) 512281009:406566824 (113.7 ¢ : 90.22 ¢)
Consistency limit 155
Distinct consistency limit 155
This page presents a novelty topic.

It may contain ideas which are less likely to find practical applications in music, or numbers or structures that are arbitrary or exceedingly small, large, or complex.

Novelty topics are often developed by a single person or a small group. As such, this page may also contain idiosyncratic terms, notation, or conceptual frameworks.

5407372813 equal divisions of the octave (abbreviated 5407372813edo or 5407372813ed2), also called 5407372813-tone equal temperament (5407372813tet) or 5407372813 equal temperament (5407372813et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 5407372813 equal parts of about 2.22e-07 ¢ each. Each step represents a frequency ratio of 21/5407372813, or the 5407372813th root of 2.

5407372813edo is consistent in the 155-odd-limit and thus has been used in Scale Workshop to quickly decide the constant structure property for JI scales.

Prime harmonics

Approximation of prime harmonics in 5407372813edo
Harmonic 2 3 5 7 11 13 17 19 23
Error Absolute (¢) +0.0000000000 -0.0000000053 -0.0000000077 +0.0000000053 -0.0000000115 -0.0000000048 +0.0000000167 +0.0000000467 -0.0000000230
Relative (%) +0.0 -2.4 -3.5 +2.4 -5.2 -2.2 +7.5 +21.0 -10.4
Steps
(reduced)
5407372813
(0)
8570483136
(3163110323)
12555530854
(1740785228)
15180414682
(4365669056)
18706436483
(2484318044)
20009657128
(3787538689)
22102435442
(472944190)
22970127748
(1340636496)
24460585939
(2831094687)
Approximation of prime harmonics in 5407372813edo (continued)
Harmonic 29 31 37 41 43 47 53 59 61
Error Absolute (¢) -0.0000000274 -0.0000000113 +0.0000000237 -0.0000000012 +0.0000000630 +0.0000000101 -0.0000000070 +0.0000000660 -0.0000000403
Relative (%) -12.4 -5.1 +10.7 -0.5 +28.4 +4.5 -3.2 +29.7 -18.2
Steps
(reduced)
26268914359
(4639423107)
26789186439
(5159695187)
28169456500
(1132592435)
28970281054
(1933416989)
29341836511
(2304972446)
30035732744
(2998868679)
30973001341
(3936137276)
31809644094
(4772780029)
32069707840
(5032843775)
Approximation of prime harmonics in 5407372813edo (continued)
Harmonic 67 71 73 79 83 89 97 101 103
Error Absolute (¢) +0.0000000634 +0.0000000367 +0.0000000161 +0.0000000431 +0.0000000292 +0.0000000349 -0.0000000027 -0.0000000081 +0.0000000442
Relative (%) +28.5 +16.5 +7.2 +19.4 +13.2 +15.7 -1.2 -3.6 +19.9
Steps
(reduced)
32801605770
(357368892)
33253975381
(809738503)
33470689037
(1026452159)
34086892637
(1642655759)
34472214903
(2027978025)
35016704899
(2572468021)
35688189271
(3243952393)
36003431755
(3559194877)
36156401165
(3712164287)
Approximation of prime harmonics in 5407372813edo (continued)
Harmonic 107 109 113 127 131 137 139 149 151
Error Absolute (¢) -0.0000000006 -0.0000000381 -0.0000000352 +0.0000000264 +0.0000000350 -0.0000000449 +0.0000000013 -0.0000000028 +0.0000000185
Relative (%) -0.3 -17.2 -15.8 +11.9 +15.8 -20.3 +0.6 -1.3 +8.3
Steps
(reduced)
36453625302
(4009388424)
36598095911
(4153859033)
36879250301
(4435013423)
37790423574
(5346186696)
38032340321
(180730630)
38381705711
(530096020)
38494768414
(643158723)
39036735590
(1185125899)
39140752997
(1289143306)