5407372813edo
← 5407372812edo | 5407372813edo | 5407372814edo → |
![]() |
This page presents a novelty topic.
It may contain ideas which are less likely to find practical applications in music, or numbers or structures that are arbitrary or exceedingly small, large, or complex. Novelty topics are often developed by a single person or a small group. As such, this page may also contain idiosyncratic terms, notation, or conceptual frameworks. |
5407372813 equal divisions of the octave (abbreviated 5407372813edo or 5407372813ed2), also called 5407372813-tone equal temperament (5407372813tet) or 5407372813 equal temperament (5407372813et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 5407372813 equal parts of about 2.22e-07 ¢ each. Each step represents a frequency ratio of 21/5407372813, or the 5407372813th root of 2.
5407372813edo is consistent in the 155-odd-limit and thus has been used in Scale Workshop to quickly decide the constant structure property for JI scales.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0000000000 | -0.0000000053 | -0.0000000077 | +0.0000000053 | -0.0000000115 | -0.0000000048 | +0.0000000167 | +0.0000000467 | -0.0000000230 |
Relative (%) | +0.0 | -2.4 | -3.5 | +2.4 | -5.2 | -2.2 | +7.5 | +21.0 | -10.4 | |
Steps (reduced) |
5407372813 (0) |
8570483136 (3163110323) |
12555530854 (1740785228) |
15180414682 (4365669056) |
18706436483 (2484318044) |
20009657128 (3787538689) |
22102435442 (472944190) |
22970127748 (1340636496) |
24460585939 (2831094687) |
Harmonic | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 | 61 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.0000000274 | -0.0000000113 | +0.0000000237 | -0.0000000012 | +0.0000000630 | +0.0000000101 | -0.0000000070 | +0.0000000660 | -0.0000000403 |
Relative (%) | -12.4 | -5.1 | +10.7 | -0.5 | +28.4 | +4.5 | -3.2 | +29.7 | -18.2 | |
Steps (reduced) |
26268914359 (4639423107) |
26789186439 (5159695187) |
28169456500 (1132592435) |
28970281054 (1933416989) |
29341836511 (2304972446) |
30035732744 (2998868679) |
30973001341 (3936137276) |
31809644094 (4772780029) |
32069707840 (5032843775) |
Harmonic | 67 | 71 | 73 | 79 | 83 | 89 | 97 | 101 | 103 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0000000634 | +0.0000000367 | +0.0000000161 | +0.0000000431 | +0.0000000292 | +0.0000000349 | -0.0000000027 | -0.0000000081 | +0.0000000442 |
Relative (%) | +28.5 | +16.5 | +7.2 | +19.4 | +13.2 | +15.7 | -1.2 | -3.6 | +19.9 | |
Steps (reduced) |
32801605770 (357368892) |
33253975381 (809738503) |
33470689037 (1026452159) |
34086892637 (1642655759) |
34472214903 (2027978025) |
35016704899 (2572468021) |
35688189271 (3243952393) |
36003431755 (3559194877) |
36156401165 (3712164287) |
Harmonic | 107 | 109 | 113 | 127 | 131 | 137 | 139 | 149 | 151 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.0000000006 | -0.0000000381 | -0.0000000352 | +0.0000000264 | +0.0000000350 | -0.0000000449 | +0.0000000013 | -0.0000000028 | +0.0000000185 |
Relative (%) | -0.3 | -17.2 | -15.8 | +11.9 | +15.8 | -20.3 | +0.6 | -1.3 | +8.3 | |
Steps (reduced) |
36453625302 (4009388424) |
36598095911 (4153859033) |
36879250301 (4435013423) |
37790423574 (5346186696) |
38032340321 (180730630) |
38381705711 (530096020) |
38494768414 (643158723) |
39036735590 (1185125899) |
39140752997 (1289143306) |