Chords of hemiwürschmidt

Revision as of 22:46, 21 December 2011 by Wikispaces>genewardsmith (**Imported revision 288069884 - Original comment: **)

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2011-12-21 22:46:00 UTC.
The original revision id was 288069884.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Würschmidt family#Hemiwürschmidt|hemiwürschmidt temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering by 540/539 are swetismic, by 441/440 werckismic, and by 243/242 rastmic. Chords requiring any two of the above are labeled jove.

Hemiwürschmidt has MOS of size 6, 7, 13, 19, 25, 31, 37 and 68. The largest chords on these lists have complexity 40, and so would require the 68 note MOS. However, it will be observed that much smaller MOS still have quite a few chords.

=Triads=
|| Number || Chord || Transversal || Type ||
||1 || 0-2-5 || 1-5/4-7/4 || otonal ||
||2 || 0-3-5 || 1-7/5-7/4 || utonal ||
||3 || 0-3-8 || 1-7/5-11/9 || werckismic ||
||4 || 0-5-8 || 1-7/4-11/9 || werckismic ||
||5 || 0-3-11 || 1-7/5-12/7 || swetismic ||
||6 || 0-8-11 || 1-11/9-12/7 || swetismic ||
||7 || 0-3-14 || 1-7/5-6/5 || otonal ||
||8 || 0-11-14 || 1-12/7-6/5 || utonal ||
||9 || 0-2-16 || 1-5/4-3/2 || otonal ||
||10 || 0-5-16 || 1-7/4-3/2 || otonal ||
||11 || 0-8-16 || 1-11/9-3/2 || rastmic ||
||12 || 0-11-16 || 1-12/7-3/2 || utonal ||
||13 || 0-14-16 || 1-6/5-3/2 || utonal ||
||14 || 0-8-24 || 1-11/9-11/6 || utonal ||
||15 || 0-16-24 || 1-3/2-11/6 || otonal ||
||16 || 0-3-27 || 1-7/5-9/7 || swetismic ||
||17 || 0-11-27 || 1-12/7-9/7 || otonal ||
||18 || 0-16-27 || 1-3/2-9/7 || utonal ||
||19 || 0-24-27 || 1-11/6-9/7 || swetismic ||
||20 || 0-3-30 || 1-7/5-9/5 || otonal ||
||21 || 0-14-30 || 1-6/5-9/5 || otonal ||
||22 || 0-16-30 || 1-3/2-9/5 || utonal ||
||23 || 0-27-30 || 1-9/7-9/5 || utonal ||
||24 || 0-2-32 || 1-5/4-9/8 || otonal ||
||25 || 0-5-32 || 1-7/4-9/8 || otonal ||
||26 || 0-8-32 || 1-11/9-9/8 || rastmic ||
||27 || 0-16-32 || 1-3/2-9/8 || ambitonal ||
||28 || 0-24-32 || 1-11/6-9/8 || rastmic ||
||29 || 0-27-32 || 1-9/7-9/8 || utonal ||
||30 || 0-30-32 || 1-9/5-9/8 || utonal ||
||31 || 0-3-35 || 1-7/5-11/7 || werckismic ||
||32 || 0-5-35 || 1-7/4-11/7 || werckismic ||
||33 || 0-8-35 || 1-11/9-11/7 || utonal ||
||34 || 0-11-35 || 1-12/7-11/7 || otonal ||
||35 || 0-24-35 || 1-11/6-11/7 || utonal ||
||36 || 0-27-35 || 1-9/7-11/7 || otonal ||
||37 || 0-30-35 || 1-9/5-11/7 || werckismic ||
||38 || 0-32-35 || 1-9/8-11/7 || werckismic ||
||39 || 0-3-38 || 1-7/5-11/10 || otonal ||
||40 || 0-8-38 || 1-11/9-11/10 || utonal ||
||41 || 0-11-38 || 1-12/7-11/10 || swetismic ||
||42 || 0-14-38 || 1-6/5-11/10 || otonal ||
||43 || 0-24-38 || 1-11/6-11/10 || utonal ||
||44 || 0-27-38 || 1-9/7-11/10 || swetismic ||
||45 || 0-30-38 || 1-9/5-11/10 || otonal ||
||46 || 0-35-38 || 1-11/7-11/10 || utonal ||
||47 || 0-2-40 || 1-5/4-11/8 || otonal ||
||48 || 0-5-40 || 1-7/4-11/8 || otonal ||
||49 || 0-8-40 || 1-11/9-11/8 || utonal ||
||50 || 0-16-40 || 1-3/2-11/8 || otonal ||
||51 || 0-24-40 || 1-11/6-11/8 || utonal ||
||52 || 0-32-40 || 1-9/8-11/8 || otonal ||
||53 || 0-35-40 || 1-11/7-11/8 || utonal ||
||54 || 0-38-40 || 1-11/10-11/8 || utonal ||

=Tetrads=
|| Number || Chord || Transversal || Type ||
|| 1 || 0-3-5-8 || 1-7/5-7/4-11/9 || werckismic ||
|| 2 || 0-3-8-11 || 1-7/5-11/9-12/7 || jove ||
|| 3 || 0-3-11-14 || 1-7/5-12/7-6/5 || swetismic ||
|| 4 || 0-2-5-16 || 1-5/4-7/4-3/2 || otonal ||
|| 5 || 0-5-8-16 || 1-7/4-11/9-3/2 || jove ||
|| 6 || 0-8-11-16 || 1-11/9-12/7-3/2 || jove ||
|| 7 || 0-11-14-16 || 1-12/7-6/5-3/2 || utonal ||
|| 8 || 0-8-16-24 || 1-11/9-3/2-11/6 || rastmic ||
|| 9 || 0-3-11-27 || 1-7/5-12/7-9/7 || swetismic ||
|| 10 || 0-11-16-27 || 1-12/7-3/2-9/7 || ambitonal ||
|| 11 || 0-16-24-27 || 1-3/2-11/6-9/7 || swetismic ||
|| 12 || 0-3-14-30 || 1-7/5-6/5-9/5 || otonal ||
|| 13 || 0-14-16-30 || 1-6/5-3/2-9/5 || ambitonal ||
|| 14 || 0-3-27-30 || 1-7/5-9/7-9/5 || swetismic ||
|| 15 || 0-16-27-30 || 1-3/2-9/7-9/5 || utonal ||
|| 16 || 0-2-5-32 || 1-5/4-7/4-9/8 || otonal ||
|| 17 || 0-5-8-32 || 1-7/4-11/9-9/8 || jove ||
|| 18 || 0-2-16-32 || 1-5/4-3/2-9/8 || otonal ||
|| 19 || 0-5-16-32 || 1-7/4-3/2-9/8 || otonal ||
|| 20 || 0-8-16-32 || 1-11/9-3/2-9/8 || rastmic ||
|| 21 || 0-8-24-32 || 1-11/9-11/6-9/8 || rastmic ||
|| 22 || 0-16-24-32 || 1-3/2-11/6-9/8 || rastmic ||
|| 23 || 0-16-27-32 || 1-3/2-9/7-9/8 || utonal ||
|| 24 || 0-24-27-32 || 1-11/6-9/7-9/8 || jove ||
|| 25 || 0-16-30-32 || 1-3/2-9/5-9/8 || utonal ||
|| 26 || 0-27-30-32 || 1-9/7-9/5-9/8 || utonal ||
|| 27 || 0-3-5-35 || 1-7/5-7/4-11/7 || werckismic ||
|| 28 || 0-3-8-35 || 1-7/5-11/9-11/7 || werckismic ||
|| 29 || 0-5-8-35 || 1-7/4-11/9-11/7 || werckismic ||
|| 30 || 0-3-11-35 || 1-7/5-12/7-11/7 || jove ||
|| 31 || 0-8-11-35 || 1-11/9-12/7-11/7 || swetismic ||
|| 32 || 0-8-24-35 || 1-11/9-11/6-11/7 || utonal ||
|| 33 || 0-3-27-35 || 1-7/5-9/7-11/7 || jove ||
|| 34 || 0-11-27-35 || 1-12/7-9/7-11/7 || otonal ||
|| 35 || 0-24-27-35 || 1-11/6-9/7-11/7 || swetismic ||
|| 36 || 0-3-30-35 || 1-7/5-9/5-11/7 || werckismic ||
|| 37 || 0-27-30-35 || 1-9/7-9/5-11/7 || werckismic ||
|| 38 || 0-5-32-35 || 1-7/4-9/8-11/7 || werckismic ||
|| 39 || 0-8-32-35 || 1-11/9-9/8-11/7 || jove ||
|| 40 || 0-24-32-35 || 1-11/6-9/8-11/7 || jove ||
|| 41 || 0-27-32-35 || 1-9/7-9/8-11/7 || werckismic ||
|| 42 || 0-30-32-35 || 1-9/5-9/8-11/7 || werckismic ||
|| 43 || 0-3-8-38 || 1-7/5-11/9-11/10 || werckismic ||
|| 44 || 0-3-11-38 || 1-7/5-12/7-11/10 || swetismic ||
|| 45 || 0-8-11-38 || 1-11/9-12/7-11/10 || swetismic ||
|| 46 || 0-3-14-38 || 1-7/5-6/5-11/10 || otonal ||
|| 47 || 0-11-14-38 || 1-12/7-6/5-11/10 || swetismic ||
|| 48 || 0-8-24-38 || 1-11/9-11/6-11/10 || utonal ||
|| 49 || 0-3-27-38 || 1-7/5-9/7-11/10 || swetismic ||
|| 50 || 0-11-27-38 || 1-12/7-9/7-11/10 || swetismic ||
|| 51 || 0-24-27-38 || 1-11/6-9/7-11/10 || swetismic ||
|| 52 || 0-3-30-38 || 1-7/5-9/5-11/10 || otonal ||
|| 53 || 0-14-30-38 || 1-6/5-9/5-11/10 || otonal ||
|| 54 || 0-27-30-38 || 1-9/7-9/5-11/10 || swetismic ||
|| 55 || 0-3-35-38 || 1-7/5-11/7-11/10 || werckismic ||
|| 56 || 0-8-35-38 || 1-11/9-11/7-11/10 || utonal ||
|| 57 || 0-11-35-38 || 1-12/7-11/7-11/10 || swetismic ||
|| 58 || 0-24-35-38 || 1-11/6-11/7-11/10 || utonal ||
|| 59 || 0-27-35-38 || 1-9/7-11/7-11/10 || swetismic ||
|| 60 || 0-30-35-38 || 1-9/5-11/7-11/10 || werckismic ||
|| 61 || 0-2-5-40 || 1-5/4-7/4-11/8 || otonal ||
|| 62 || 0-5-8-40 || 1-7/4-11/9-11/8 || werckismic ||
|| 63 || 0-2-16-40 || 1-5/4-3/2-11/8 || otonal ||
|| 64 || 0-5-16-40 || 1-7/4-3/2-11/8 || otonal ||
|| 65 || 0-8-16-40 || 1-11/9-3/2-11/8 || rastmic ||
|| 66 || 0-8-24-40 || 1-11/9-11/6-11/8 || utonal ||
|| 67 || 0-16-24-40 || 1-3/2-11/6-11/8 || ambitonal ||
|| 68 || 0-2-32-40 || 1-5/4-9/8-11/8 || otonal ||
|| 69 || 0-5-32-40 || 1-7/4-9/8-11/8 || otonal ||
|| 70 || 0-8-32-40 || 1-11/9-9/8-11/8 || rastmic ||
|| 71 || 0-16-32-40 || 1-3/2-9/8-11/8 || otonal ||
|| 72 || 0-24-32-40 || 1-11/6-9/8-11/8 || rastmic ||
|| 73 || 0-5-35-40 || 1-7/4-11/7-11/8 || werckismic ||
|| 74 || 0-8-35-40 || 1-11/9-11/7-11/8 || utonal ||
|| 75 || 0-24-35-40 || 1-11/6-11/7-11/8 || utonal ||
|| 76 || 0-32-35-40 || 1-9/8-11/7-11/8 || werckismic ||
|| 77 || 0-8-38-40 || 1-11/9-11/10-11/8 || utonal ||
|| 78 || 0-24-38-40 || 1-11/6-11/10-11/8 || utonal ||
|| 79 || 0-35-38-40 || 1-11/7-11/10-11/8 || utonal ||

=Pentads=
|| Number || Chord || Transversal || Type ||
|| 1 || 0-2-5-16-32 || 1-5/4-7/4-3/2-9/8 || otonal ||
|| 2 || 0-5-8-16-32 || 1-7/4-11/9-3/2-9/8 || jove ||
|| 3 || 0-8-16-24-32 || 1-11/9-3/2-11/6-9/8 || rastmic ||
|| 4 || 0-16-24-27-32 || 1-3/2-11/6-9/7-9/8 || jove ||
|| 5 || 0-16-27-30-32 || 1-3/2-9/7-9/5-9/8 || utonal ||
|| 6 || 0-3-5-8-35 || 1-7/5-7/4-11/9-11/7 || werckismic ||
|| 7 || 0-3-8-11-35 || 1-7/5-11/9-12/7-11/7 || jove ||
|| 8 || 0-3-11-27-35 || 1-7/5-12/7-9/7-11/7 || jove ||
|| 9 || 0-3-27-30-35 || 1-7/5-9/7-9/5-11/7 || jove ||
|| 10 || 0-5-8-32-35 || 1-7/4-11/9-9/8-11/7 || jove ||
|| 11 || 0-8-24-32-35 || 1-11/9-11/6-9/8-11/7 || jove ||
|| 12 || 0-24-27-32-35 || 1-11/6-9/7-9/8-11/7 || jove ||
|| 13 || 0-27-30-32-35 || 1-9/7-9/5-9/8-11/7 || werckismic ||
|| 14 || 0-3-8-11-38 || 1-7/5-11/9-12/7-11/10 || jove ||
|| 15 || 0-3-11-14-38 || 1-7/5-12/7-6/5-11/10 || swetismic ||
|| 16 || 0-3-11-27-38 || 1-7/5-12/7-9/7-11/10 || swetismic ||
|| 17 || 0-3-14-30-38 || 1-7/5-6/5-9/5-11/10 || otonal ||
|| 18 || 0-3-27-30-38 || 1-7/5-9/7-9/5-11/10 || swetismic ||
|| 19 || 0-3-8-35-38 || 1-7/5-11/9-11/7-11/10 || werckismic ||
|| 20 || 0-3-11-35-38 || 1-7/5-12/7-11/7-11/10 || jove ||
|| 21 || 0-8-11-35-38 || 1-11/9-12/7-11/7-11/10 || swetismic ||
|| 22 || 0-8-24-35-38 || 1-11/9-11/6-11/7-11/10 || utonal ||
|| 23 || 0-3-27-35-38 || 1-7/5-9/7-11/7-11/10 || jove ||
|| 24 || 0-11-27-35-38 || 1-12/7-9/7-11/7-11/10 || swetismic ||
|| 25 || 0-24-27-35-38 || 1-11/6-9/7-11/7-11/10 || swetismic ||
|| 26 || 0-3-30-35-38 || 1-7/5-9/5-11/7-11/10 || werckismic ||
|| 27 || 0-27-30-35-38 || 1-9/7-9/5-11/7-11/10 || jove ||
|| 28 || 0-2-5-16-40 || 1-5/4-7/4-3/2-11/8 || otonal ||
|| 29 || 0-5-8-16-40 || 1-7/4-11/9-3/2-11/8 || jove ||
|| 30 || 0-8-16-24-40 || 1-11/9-3/2-11/6-11/8 || rastmic ||
|| 31 || 0-2-5-32-40 || 1-5/4-7/4-9/8-11/8 || otonal ||
|| 32 || 0-5-8-32-40 || 1-7/4-11/9-9/8-11/8 || jove ||
|| 33 || 0-2-16-32-40 || 1-5/4-3/2-9/8-11/8 || otonal ||
|| 34 || 0-5-16-32-40 || 1-7/4-3/2-9/8-11/8 || otonal ||
|| 35 || 0-8-16-32-40 || 1-11/9-3/2-9/8-11/8 || rastmic ||
|| 36 || 0-8-24-32-40 || 1-11/9-11/6-9/8-11/8 || rastmic ||
|| 37 || 0-16-24-32-40 || 1-3/2-11/6-9/8-11/8 || rastmic ||
|| 38 || 0-5-8-35-40 || 1-7/4-11/9-11/7-11/8 || werckismic ||
|| 39 || 0-8-24-35-40 || 1-11/9-11/6-11/7-11/8 || utonal ||
|| 40 || 0-5-32-35-40 || 1-7/4-9/8-11/7-11/8 || werckismic ||
|| 41 || 0-8-32-35-40 || 1-11/9-9/8-11/7-11/8 || jove ||
|| 42 || 0-24-32-35-40 || 1-11/6-9/8-11/7-11/8 || jove ||
|| 43 || 0-8-24-38-40 || 1-11/9-11/6-11/10-11/8 || utonal ||
|| 44 || 0-8-35-38-40 || 1-11/9-11/7-11/10-11/8 || utonal ||
|| 45 || 0-24-35-38-40 || 1-11/6-11/7-11/10-11/8 || utonal ||

=Hexads=
|| Number || Chord || Transversal || Type ||
|| 1 || 0-3-8-11-35-38 || 1-7/5-11/9-12/7-11/7-11/10 || jove ||
|| 2 || 0-3-11-27-35-38 || 1-7/5-12/7-9/7-11/7-11/10 || jove ||
|| 3 || 0-3-27-30-35-38 || 1-7/5-9/7-9/5-11/7-11/10 || jove ||
|| 4 || 0-2-5-16-32-40 || 1-5/4-7/4-3/2-9/8-11/8 || otonal ||
|| 5 || 0-5-8-16-32-40 || 1-7/4-11/9-3/2-9/8-11/8 || jove ||
|| 6 || 0-8-16-24-32-40 || 1-11/9-3/2-11/6-9/8-11/8 || rastmic ||
|| 7 || 0-5-8-32-35-40 || 1-7/4-11/9-9/8-11/7-11/8 || jove ||
|| 8 || 0-8-24-32-35-40 || 1-11/9-11/6-9/8-11/7-11/8 || jove ||
|| 9 || 0-8-24-35-38-40 || 1-11/9-11/6-11/7-11/10-11/8 || utonal ||

Original HTML content:

<html><head><title>Chords of hemiwürschmidt</title></head><body>Below are listed the <a class="wiki_link" href="/Dyadic%20chord">dyadic chords</a> of 11-limit <a class="wiki_link" href="/W%C3%BCrschmidt%20family#Hemiwürschmidt">hemiwürschmidt temperament</a>. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering by 540/539 are swetismic, by 441/440 werckismic, and by 243/242 rastmic. Chords requiring any two of the above are labeled jove.<br />
<br />
Hemiwürschmidt has MOS of size 6, 7, 13, 19, 25, 31, 37 and 68. The largest chords on these lists have complexity 40, and so would require the 68 note MOS. However, it will be observed that much smaller MOS still have quite a few chords.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Triads"></a><!-- ws:end:WikiTextHeadingRule:0 -->Triads</h1>


<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-2-5<br />
</td>
        <td>1-5/4-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-3-5<br />
</td>
        <td>1-7/5-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-3-8<br />
</td>
        <td>1-7/5-11/9<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-5-8<br />
</td>
        <td>1-7/4-11/9<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-3-11<br />
</td>
        <td>1-7/5-12/7<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-8-11<br />
</td>
        <td>1-11/9-12/7<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>0-3-14<br />
</td>
        <td>1-7/5-6/5<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>0-11-14<br />
</td>
        <td>1-12/7-6/5<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>0-2-16<br />
</td>
        <td>1-5/4-3/2<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>0-5-16<br />
</td>
        <td>1-7/4-3/2<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>0-8-16<br />
</td>
        <td>1-11/9-3/2<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>0-11-16<br />
</td>
        <td>1-12/7-3/2<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>0-14-16<br />
</td>
        <td>1-6/5-3/2<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>0-8-24<br />
</td>
        <td>1-11/9-11/6<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>0-16-24<br />
</td>
        <td>1-3/2-11/6<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>0-3-27<br />
</td>
        <td>1-7/5-9/7<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>0-11-27<br />
</td>
        <td>1-12/7-9/7<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>0-16-27<br />
</td>
        <td>1-3/2-9/7<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>0-24-27<br />
</td>
        <td>1-11/6-9/7<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>0-3-30<br />
</td>
        <td>1-7/5-9/5<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>0-14-30<br />
</td>
        <td>1-6/5-9/5<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>0-16-30<br />
</td>
        <td>1-3/2-9/5<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>0-27-30<br />
</td>
        <td>1-9/7-9/5<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>0-2-32<br />
</td>
        <td>1-5/4-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>0-5-32<br />
</td>
        <td>1-7/4-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>0-8-32<br />
</td>
        <td>1-11/9-9/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>0-16-32<br />
</td>
        <td>1-3/2-9/8<br />
</td>
        <td>ambitonal<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>0-24-32<br />
</td>
        <td>1-11/6-9/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>0-27-32<br />
</td>
        <td>1-9/7-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>0-30-32<br />
</td>
        <td>1-9/5-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>0-3-35<br />
</td>
        <td>1-7/5-11/7<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>0-5-35<br />
</td>
        <td>1-7/4-11/7<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>0-8-35<br />
</td>
        <td>1-11/9-11/7<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>0-11-35<br />
</td>
        <td>1-12/7-11/7<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>0-24-35<br />
</td>
        <td>1-11/6-11/7<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>0-27-35<br />
</td>
        <td>1-9/7-11/7<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>0-30-35<br />
</td>
        <td>1-9/5-11/7<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>0-32-35<br />
</td>
        <td>1-9/8-11/7<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>0-3-38<br />
</td>
        <td>1-7/5-11/10<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>0-8-38<br />
</td>
        <td>1-11/9-11/10<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>0-11-38<br />
</td>
        <td>1-12/7-11/10<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>0-14-38<br />
</td>
        <td>1-6/5-11/10<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>0-24-38<br />
</td>
        <td>1-11/6-11/10<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>0-27-38<br />
</td>
        <td>1-9/7-11/10<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>0-30-38<br />
</td>
        <td>1-9/5-11/10<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>0-35-38<br />
</td>
        <td>1-11/7-11/10<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>0-2-40<br />
</td>
        <td>1-5/4-11/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>48<br />
</td>
        <td>0-5-40<br />
</td>
        <td>1-7/4-11/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>49<br />
</td>
        <td>0-8-40<br />
</td>
        <td>1-11/9-11/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>50<br />
</td>
        <td>0-16-40<br />
</td>
        <td>1-3/2-11/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>51<br />
</td>
        <td>0-24-40<br />
</td>
        <td>1-11/6-11/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>52<br />
</td>
        <td>0-32-40<br />
</td>
        <td>1-9/8-11/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>53<br />
</td>
        <td>0-35-40<br />
</td>
        <td>1-11/7-11/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>54<br />
</td>
        <td>0-38-40<br />
</td>
        <td>1-11/10-11/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Tetrads"></a><!-- ws:end:WikiTextHeadingRule:2 -->Tetrads</h1>


<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-3-5-8<br />
</td>
        <td>1-7/5-7/4-11/9<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-3-8-11<br />
</td>
        <td>1-7/5-11/9-12/7<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-3-11-14<br />
</td>
        <td>1-7/5-12/7-6/5<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-2-5-16<br />
</td>
        <td>1-5/4-7/4-3/2<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-5-8-16<br />
</td>
        <td>1-7/4-11/9-3/2<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-8-11-16<br />
</td>
        <td>1-11/9-12/7-3/2<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>0-11-14-16<br />
</td>
        <td>1-12/7-6/5-3/2<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>0-8-16-24<br />
</td>
        <td>1-11/9-3/2-11/6<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>0-3-11-27<br />
</td>
        <td>1-7/5-12/7-9/7<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>0-11-16-27<br />
</td>
        <td>1-12/7-3/2-9/7<br />
</td>
        <td>ambitonal<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>0-16-24-27<br />
</td>
        <td>1-3/2-11/6-9/7<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>0-3-14-30<br />
</td>
        <td>1-7/5-6/5-9/5<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>0-14-16-30<br />
</td>
        <td>1-6/5-3/2-9/5<br />
</td>
        <td>ambitonal<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>0-3-27-30<br />
</td>
        <td>1-7/5-9/7-9/5<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>0-16-27-30<br />
</td>
        <td>1-3/2-9/7-9/5<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>0-2-5-32<br />
</td>
        <td>1-5/4-7/4-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>0-5-8-32<br />
</td>
        <td>1-7/4-11/9-9/8<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>0-2-16-32<br />
</td>
        <td>1-5/4-3/2-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>0-5-16-32<br />
</td>
        <td>1-7/4-3/2-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>0-8-16-32<br />
</td>
        <td>1-11/9-3/2-9/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>0-8-24-32<br />
</td>
        <td>1-11/9-11/6-9/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>0-16-24-32<br />
</td>
        <td>1-3/2-11/6-9/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>0-16-27-32<br />
</td>
        <td>1-3/2-9/7-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>0-24-27-32<br />
</td>
        <td>1-11/6-9/7-9/8<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>0-16-30-32<br />
</td>
        <td>1-3/2-9/5-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>0-27-30-32<br />
</td>
        <td>1-9/7-9/5-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>0-3-5-35<br />
</td>
        <td>1-7/5-7/4-11/7<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>0-3-8-35<br />
</td>
        <td>1-7/5-11/9-11/7<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>0-5-8-35<br />
</td>
        <td>1-7/4-11/9-11/7<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>0-3-11-35<br />
</td>
        <td>1-7/5-12/7-11/7<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>0-8-11-35<br />
</td>
        <td>1-11/9-12/7-11/7<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>0-8-24-35<br />
</td>
        <td>1-11/9-11/6-11/7<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>0-3-27-35<br />
</td>
        <td>1-7/5-9/7-11/7<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>0-11-27-35<br />
</td>
        <td>1-12/7-9/7-11/7<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>0-24-27-35<br />
</td>
        <td>1-11/6-9/7-11/7<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>0-3-30-35<br />
</td>
        <td>1-7/5-9/5-11/7<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>0-27-30-35<br />
</td>
        <td>1-9/7-9/5-11/7<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>0-5-32-35<br />
</td>
        <td>1-7/4-9/8-11/7<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>0-8-32-35<br />
</td>
        <td>1-11/9-9/8-11/7<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>0-24-32-35<br />
</td>
        <td>1-11/6-9/8-11/7<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>0-27-32-35<br />
</td>
        <td>1-9/7-9/8-11/7<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>0-30-32-35<br />
</td>
        <td>1-9/5-9/8-11/7<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>0-3-8-38<br />
</td>
        <td>1-7/5-11/9-11/10<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>0-3-11-38<br />
</td>
        <td>1-7/5-12/7-11/10<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>0-8-11-38<br />
</td>
        <td>1-11/9-12/7-11/10<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>0-3-14-38<br />
</td>
        <td>1-7/5-6/5-11/10<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>0-11-14-38<br />
</td>
        <td>1-12/7-6/5-11/10<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>48<br />
</td>
        <td>0-8-24-38<br />
</td>
        <td>1-11/9-11/6-11/10<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>49<br />
</td>
        <td>0-3-27-38<br />
</td>
        <td>1-7/5-9/7-11/10<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>50<br />
</td>
        <td>0-11-27-38<br />
</td>
        <td>1-12/7-9/7-11/10<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>51<br />
</td>
        <td>0-24-27-38<br />
</td>
        <td>1-11/6-9/7-11/10<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>52<br />
</td>
        <td>0-3-30-38<br />
</td>
        <td>1-7/5-9/5-11/10<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>53<br />
</td>
        <td>0-14-30-38<br />
</td>
        <td>1-6/5-9/5-11/10<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>54<br />
</td>
        <td>0-27-30-38<br />
</td>
        <td>1-9/7-9/5-11/10<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>55<br />
</td>
        <td>0-3-35-38<br />
</td>
        <td>1-7/5-11/7-11/10<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>56<br />
</td>
        <td>0-8-35-38<br />
</td>
        <td>1-11/9-11/7-11/10<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>57<br />
</td>
        <td>0-11-35-38<br />
</td>
        <td>1-12/7-11/7-11/10<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>58<br />
</td>
        <td>0-24-35-38<br />
</td>
        <td>1-11/6-11/7-11/10<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>59<br />
</td>
        <td>0-27-35-38<br />
</td>
        <td>1-9/7-11/7-11/10<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>60<br />
</td>
        <td>0-30-35-38<br />
</td>
        <td>1-9/5-11/7-11/10<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>61<br />
</td>
        <td>0-2-5-40<br />
</td>
        <td>1-5/4-7/4-11/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>62<br />
</td>
        <td>0-5-8-40<br />
</td>
        <td>1-7/4-11/9-11/8<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>63<br />
</td>
        <td>0-2-16-40<br />
</td>
        <td>1-5/4-3/2-11/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>64<br />
</td>
        <td>0-5-16-40<br />
</td>
        <td>1-7/4-3/2-11/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>65<br />
</td>
        <td>0-8-16-40<br />
</td>
        <td>1-11/9-3/2-11/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>66<br />
</td>
        <td>0-8-24-40<br />
</td>
        <td>1-11/9-11/6-11/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>67<br />
</td>
        <td>0-16-24-40<br />
</td>
        <td>1-3/2-11/6-11/8<br />
</td>
        <td>ambitonal<br />
</td>
    </tr>
    <tr>
        <td>68<br />
</td>
        <td>0-2-32-40<br />
</td>
        <td>1-5/4-9/8-11/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>69<br />
</td>
        <td>0-5-32-40<br />
</td>
        <td>1-7/4-9/8-11/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>70<br />
</td>
        <td>0-8-32-40<br />
</td>
        <td>1-11/9-9/8-11/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>71<br />
</td>
        <td>0-16-32-40<br />
</td>
        <td>1-3/2-9/8-11/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>72<br />
</td>
        <td>0-24-32-40<br />
</td>
        <td>1-11/6-9/8-11/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>73<br />
</td>
        <td>0-5-35-40<br />
</td>
        <td>1-7/4-11/7-11/8<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>74<br />
</td>
        <td>0-8-35-40<br />
</td>
        <td>1-11/9-11/7-11/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>75<br />
</td>
        <td>0-24-35-40<br />
</td>
        <td>1-11/6-11/7-11/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>76<br />
</td>
        <td>0-32-35-40<br />
</td>
        <td>1-9/8-11/7-11/8<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>77<br />
</td>
        <td>0-8-38-40<br />
</td>
        <td>1-11/9-11/10-11/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>78<br />
</td>
        <td>0-24-38-40<br />
</td>
        <td>1-11/6-11/10-11/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>79<br />
</td>
        <td>0-35-38-40<br />
</td>
        <td>1-11/7-11/10-11/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Pentads"></a><!-- ws:end:WikiTextHeadingRule:4 -->Pentads</h1>


<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-2-5-16-32<br />
</td>
        <td>1-5/4-7/4-3/2-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-5-8-16-32<br />
</td>
        <td>1-7/4-11/9-3/2-9/8<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-8-16-24-32<br />
</td>
        <td>1-11/9-3/2-11/6-9/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-16-24-27-32<br />
</td>
        <td>1-3/2-11/6-9/7-9/8<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-16-27-30-32<br />
</td>
        <td>1-3/2-9/7-9/5-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-3-5-8-35<br />
</td>
        <td>1-7/5-7/4-11/9-11/7<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>0-3-8-11-35<br />
</td>
        <td>1-7/5-11/9-12/7-11/7<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>0-3-11-27-35<br />
</td>
        <td>1-7/5-12/7-9/7-11/7<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>0-3-27-30-35<br />
</td>
        <td>1-7/5-9/7-9/5-11/7<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>0-5-8-32-35<br />
</td>
        <td>1-7/4-11/9-9/8-11/7<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>0-8-24-32-35<br />
</td>
        <td>1-11/9-11/6-9/8-11/7<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>0-24-27-32-35<br />
</td>
        <td>1-11/6-9/7-9/8-11/7<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>0-27-30-32-35<br />
</td>
        <td>1-9/7-9/5-9/8-11/7<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>0-3-8-11-38<br />
</td>
        <td>1-7/5-11/9-12/7-11/10<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>0-3-11-14-38<br />
</td>
        <td>1-7/5-12/7-6/5-11/10<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>0-3-11-27-38<br />
</td>
        <td>1-7/5-12/7-9/7-11/10<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>0-3-14-30-38<br />
</td>
        <td>1-7/5-6/5-9/5-11/10<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>0-3-27-30-38<br />
</td>
        <td>1-7/5-9/7-9/5-11/10<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>0-3-8-35-38<br />
</td>
        <td>1-7/5-11/9-11/7-11/10<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>0-3-11-35-38<br />
</td>
        <td>1-7/5-12/7-11/7-11/10<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>0-8-11-35-38<br />
</td>
        <td>1-11/9-12/7-11/7-11/10<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>0-8-24-35-38<br />
</td>
        <td>1-11/9-11/6-11/7-11/10<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>0-3-27-35-38<br />
</td>
        <td>1-7/5-9/7-11/7-11/10<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>0-11-27-35-38<br />
</td>
        <td>1-12/7-9/7-11/7-11/10<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>0-24-27-35-38<br />
</td>
        <td>1-11/6-9/7-11/7-11/10<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>0-3-30-35-38<br />
</td>
        <td>1-7/5-9/5-11/7-11/10<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>0-27-30-35-38<br />
</td>
        <td>1-9/7-9/5-11/7-11/10<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>0-2-5-16-40<br />
</td>
        <td>1-5/4-7/4-3/2-11/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>0-5-8-16-40<br />
</td>
        <td>1-7/4-11/9-3/2-11/8<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>0-8-16-24-40<br />
</td>
        <td>1-11/9-3/2-11/6-11/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>0-2-5-32-40<br />
</td>
        <td>1-5/4-7/4-9/8-11/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>0-5-8-32-40<br />
</td>
        <td>1-7/4-11/9-9/8-11/8<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>0-2-16-32-40<br />
</td>
        <td>1-5/4-3/2-9/8-11/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>0-5-16-32-40<br />
</td>
        <td>1-7/4-3/2-9/8-11/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>0-8-16-32-40<br />
</td>
        <td>1-11/9-3/2-9/8-11/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>0-8-24-32-40<br />
</td>
        <td>1-11/9-11/6-9/8-11/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>0-16-24-32-40<br />
</td>
        <td>1-3/2-11/6-9/8-11/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>0-5-8-35-40<br />
</td>
        <td>1-7/4-11/9-11/7-11/8<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>0-8-24-35-40<br />
</td>
        <td>1-11/9-11/6-11/7-11/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>0-5-32-35-40<br />
</td>
        <td>1-7/4-9/8-11/7-11/8<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>0-8-32-35-40<br />
</td>
        <td>1-11/9-9/8-11/7-11/8<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>0-24-32-35-40<br />
</td>
        <td>1-11/6-9/8-11/7-11/8<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>0-8-24-38-40<br />
</td>
        <td>1-11/9-11/6-11/10-11/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>0-8-35-38-40<br />
</td>
        <td>1-11/9-11/7-11/10-11/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>0-24-35-38-40<br />
</td>
        <td>1-11/6-11/7-11/10-11/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Hexads"></a><!-- ws:end:WikiTextHeadingRule:6 -->Hexads</h1>


<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-3-8-11-35-38<br />
</td>
        <td>1-7/5-11/9-12/7-11/7-11/10<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-3-11-27-35-38<br />
</td>
        <td>1-7/5-12/7-9/7-11/7-11/10<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-3-27-30-35-38<br />
</td>
        <td>1-7/5-9/7-9/5-11/7-11/10<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-2-5-16-32-40<br />
</td>
        <td>1-5/4-7/4-3/2-9/8-11/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-5-8-16-32-40<br />
</td>
        <td>1-7/4-11/9-3/2-9/8-11/8<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-8-16-24-32-40<br />
</td>
        <td>1-11/9-3/2-11/6-9/8-11/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>0-5-8-32-35-40<br />
</td>
        <td>1-7/4-11/9-9/8-11/7-11/8<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>0-8-24-32-35-40<br />
</td>
        <td>1-11/9-11/6-9/8-11/7-11/8<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>0-8-24-35-38-40<br />
</td>
        <td>1-11/9-11/6-11/7-11/10-11/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
</table>

</body></html>