Pentacircle chords

Revision as of 17:15, 17 December 2011 by Wikispaces>genewardsmith (**Imported revision 287093074 - Original comment: **)

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2011-12-17 17:15:07 UTC.
The original revision id was 287093074.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

A //pentacircle chord// is an [[Dyadic chord#Essentially tempered dyadic chords|essentially tempered dyadic chord]] in the 2.9.7.11 subgroup in the 11-odd-limit, tempering out the pentacircle comma, 896/891. The pentacircle triads are three in number, 1-9/7-16/9 with steps 9/7-11/8-9/8; 1-9/7-16/11 with steps 9/7-9/8-11/8; and 1-11/7-16/9 with steps 11/7-9/8-9/8. There are six pentacircle tetrads: the palindromic 1-9/8-14/9-7/4 with steps 9/8-11/8-9/8-8/7; the palindromic 1-9/8-11/8-14/9 with steps 9/8-11/9-9/8-9/7; the inverse pair 1-11/8-11/7-16/9 with steps 11/8-8/7-9/8-9/8 and 1-11/8-14/9-7/4 with steps 11/8-9/8-9/8-8/7; and the inverse pair 1-11/9-11/7-16/9 with steps 11/9-9/7-9/8-9/8 and 1-11/9-11/8-14/9 with steps 11/9-9/8-9/8-9/7. Finally, there are two pentacircle pentads, inversely related: 1-11/9-11/8-11/7-16/9 with steps 11/9-9/8-8/7-9/8-9/8 and 1-11/9-11/8-14/9-16/9 with steps 11/9-9/8-9/8-8/7-9/8.

The count of chords is triads: 3, tetrads: 6, pentads: 2, for a total of 11.

Equal divisions with pentacircle chords include 22, 27, 41, 46, 58, 68, 80, 87, 121, 145, 167, 208, 266e and 433bce.




Original HTML content:

<html><head><title>pentacircle chords</title></head><body>A <em>pentacircle chord</em> is an <a class="wiki_link" href="/Dyadic%20chord#Essentially tempered dyadic chords">essentially tempered dyadic chord</a> in the 2.9.7.11 subgroup in the 11-odd-limit, tempering out the pentacircle comma, 896/891. The pentacircle triads are three in number, 1-9/7-16/9 with steps 9/7-11/8-9/8; 1-9/7-16/11 with steps 9/7-9/8-11/8; and 1-11/7-16/9 with steps 11/7-9/8-9/8. There are six pentacircle tetrads: the palindromic 1-9/8-14/9-7/4 with steps 9/8-11/8-9/8-8/7; the palindromic 1-9/8-11/8-14/9 with steps 9/8-11/9-9/8-9/7; the inverse pair 1-11/8-11/7-16/9 with steps 11/8-8/7-9/8-9/8 and 1-11/8-14/9-7/4 with steps 11/8-9/8-9/8-8/7; and the inverse pair 1-11/9-11/7-16/9 with steps 11/9-9/7-9/8-9/8 and 1-11/9-11/8-14/9 with steps 11/9-9/8-9/8-9/7. Finally, there are two pentacircle pentads, inversely related: 1-11/9-11/8-11/7-16/9 with steps 11/9-9/8-8/7-9/8-9/8 and 1-11/9-11/8-14/9-16/9 with steps 11/9-9/8-9/8-8/7-9/8.<br />
<br />
The count of chords is triads: 3, tetrads: 6, pentads: 2, for a total of 11.<br />
<br />
Equal divisions with pentacircle chords include 22, 27, 41, 46, 58, 68, 80, 87, 121, 145, 167, 208, 266e and 433bce.</body></html>