Chords of hemiwur

Revision as of 01:26, 1 January 2012 by Wikispaces>genewardsmith (**Imported revision 288950695 - Original comment: **)

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2012-01-01 01:26:30 UTC.
The original revision id was 288950695.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Würschmidt family#Hemiwürschmidt|hemiwur temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 121/120 are biyatismic, by 176/175 valinorsmic, and by 385/384 keenanismic. Chords requiring any two of the above are labeled zeus.

Hemiwur has MOS of size 6, 7, 13, 19, 25, 31, 37 and 68. The largest chords on these lists have complexity 32, and so would require the 37 note MOS, but there are many chords of much lower complexity, so that the 13-note MOS, for instance, has a couple of hexads, plus many more pentads, tetrads and triads.

=Triads=
|| Number || Chord || Transversal || Type ||
|| 1 || 0-2-4 || 1-5/4-11/7 || valinorsmic ||
|| 2 || 0-2-5 || 1-5/4-7/4 || otonal ||
|| 3 || 0-3-5 || 1-7/5-7/4 || utonal ||
|| 4 || 0-2-7 || 1-5/4-11/10 || valinorsmic ||
|| 5 || 0-3-7 || 1-7/5-11/10 || otonal ||
|| 6 || 0-4-7 || 1-11/7-11/10 || utonal ||
|| 7 || 0-5-7 || 1-7/4-11/10 || valinorsmic ||
|| 8 || 0-2-9 || 1-5/4-11/8 || otonal ||
|| 9 || 0-4-9 || 1-11/7-11/8 || utonal ||
|| 10 || 0-5-9 || 1-7/4-11/8 || otonal ||
|| 11 || 0-7-9 || 1-11/10-11/8 || utonal ||
|| 12 || 0-2-11 || 1-5/4-12/7 || keenanismic ||
|| 13 || 0-4-11 || 1-11/7-12/7 || otonal ||
|| 14 || 0-7-11 || 1-12/11-12/7 || utonal ||
|| 15 || 0-9-11 || 1-11/8-12/7 || keenanismic ||
|| 16 || 0-3-14 || 1-7/5-6/5 || otonal ||
|| 17 || 0-5-14 || 1-7/4-6/5 || keenanismic ||
|| 18 || 0-7-14 || 1-11/10-6/5 || otonal ||
|| 19 || 0-9-14 || 1-11/8-6/5 || keenanismic ||
|| 20 || 0-11-14 || 1-12/7-6/5 || utonal ||
|| 21 || 0-2-16 || 1-5/4-3/2 || otonal ||
|| 22 || 0-5-16 || 1-7/4-3/2 || otonal ||
|| 23 || 0-7-16 || 1-12/11-3/2 || utonal ||
|| 24 || 0-9-16 || 1-11/8-3/2 || otonal ||
|| 25 || 0-11-16 || 1-12/7-3/2 || utonal ||
|| 26 || 0-14-16 || 1-6/5-3/2 || utonal ||
|| 27 || 0-7-23 || 1-12/11-18/11 || otonal ||
|| 28 || 0-9-23 || 1-11/8-18/11 || biyatismic ||
|| 29 || 0-14-23 || 1-6/5-18/11 || biyatismic ||
|| 30 || 0-16-23 || 1-3/2-18/11 || utonal ||
|| 31 || 0-4-27 || 1-11/7-9/7 || otonal ||
|| 32 || 0-11-27 || 1-12/7-9/7 || otonal ||
|| 33 || 0-16-27 || 1-3/2-9/7 || utonal ||
|| 34 || 0-23-27 || 1-18/11-9/7 || utonal ||
|| 35 || 0-3-30 || 1-7/5-9/5 || otonal ||
|| 36 || 0-7-30 || 1-11/10-9/5 || otonal ||
|| 37 || 0-14-30 || 1-6/5-9/5 || otonal ||
|| 38 || 0-16-30 || 1-3/2-9/5 || utonal ||
|| 39 || 0-23-30 || 1-18/11-9/5 || utonal ||
|| 40 || 0-27-30 || 1-9/7-9/5 || utonal ||
|| 41 || 0-2-32 || 1-5/4-9/8 || otonal ||
|| 42 || 0-5-32 || 1-7/4-9/8 || otonal ||
|| 43 || 0-9-32 || 1-11/8-9/8 || otonal ||
|| 44 || 0-16-32 || 1-3/2-9/8 || ambitonal ||
|| 45 || 0-23-32 || 1-18/11-9/8 || utonal ||
|| 46 || 0-27-32 || 1-9/7-9/8 || utonal ||
|| 47 || 0-30-32 || 1-9/5-9/8 || utonal ||

=Tetrads=
|| Number || Chord || Transversal || Type ||
|| 1 || 0-2-4-7 || 1-5/4-11/7-11/10 || valinorsmic ||
|| 2 || 0-2-5-7 || 1-5/4-7/4-11/10 || valinorsmic ||
|| 3 || 0-3-5-7 || 1-7/5-7/4-11/10 || valinorsmic ||
|| 4 || 0-2-4-9 || 1-5/4-11/7-11/8 || valinorsmic ||
|| 5 || 0-2-5-9 || 1-5/4-7/4-11/8 || otonal ||
|| 6 || 0-2-7-9 || 1-5/4-11/10-11/8 || valinorsmic ||
|| 7 || 0-4-7-9 || 1-11/7-11/10-11/8 || utonal ||
|| 8 || 0-5-7-9 || 1-7/4-11/10-11/8 || valinorsmic ||
|| 9 || 0-2-4-11 || 1-5/4-11/7-12/7 || zeus ||
|| 10 || 0-2-7-11 || 1-5/4-11/10-12/7 || zeus ||
|| 11 || 0-4-7-11 || 1-11/7-11/10-12/7 || biyatismic ||
|| 12 || 0-2-9-11 || 1-5/4-11/8-12/7 || keenanismic ||
|| 13 || 0-4-9-11 || 1-11/7-11/8-12/7 || zeus ||
|| 14 || 0-7-9-11 || 1-11/10-11/8-12/7 || zeus ||
|| 15 || 0-3-5-14 || 1-7/5-7/4-6/5 || keenanismic ||
|| 16 || 0-3-7-14 || 1-7/5-11/10-6/5 || otonal ||
|| 17 || 0-5-7-14 || 1-7/4-11/10-6/5 || zeus ||
|| 18 || 0-5-9-14 || 1-7/4-11/8-6/5 || keenanismic ||
|| 19 || 0-7-9-14 || 1-11/10-11/8-6/5 || zeus ||
|| 20 || 0-7-11-14 || 1-12/11-12/7-6/5 || utonal ||
|| 21 || 0-9-11-14 || 1-11/8-12/7-6/5 || keenanismic ||
|| 22 || 0-2-5-16 || 1-5/4-7/4-3/2 || otonal ||
|| 23 || 0-2-7-16 || 1-5/4-11/10-3/2 || zeus ||
|| 24 || 0-5-7-16 || 1-7/4-11/10-3/2 || zeus ||
|| 25 || 0-2-9-16 || 1-5/4-11/8-3/2 || otonal ||
|| 26 || 0-5-9-16 || 1-7/4-11/8-3/2 || otonal ||
|| 27 || 0-7-9-16 || 1-11/10-11/8-3/2 || biyatismic ||
|| 28 || 0-2-11-16 || 1-5/4-12/7-3/2 || keenanismic ||
|| 29 || 0-7-11-16 || 1-12/11-12/7-3/2 || utonal ||
|| 30 || 0-9-11-16 || 1-11/8-12/7-3/2 || zeus ||
|| 31 || 0-5-14-16 || 1-7/4-6/5-3/2 || keenanismic ||
|| 32 || 0-7-14-16 || 1-12/11-6/5-3/2 || utonal ||
|| 33 || 0-9-14-16 || 1-11/8-6/5-3/2 || zeus ||
|| 34 || 0-11-14-16 || 1-12/7-6/5-3/2 || utonal ||
|| 35 || 0-7-9-23 || 1-11/10-11/8-18/11 || biyatismic ||
|| 36 || 0-7-14-23 || 1-11/10-6/5-18/11 || biyatismic ||
|| 37 || 0-9-14-23 || 1-11/8-6/5-18/11 || zeus ||
|| 38 || 0-7-16-23 || 1-12/11-3/2-18/11 || ambitonal ||
|| 39 || 0-9-16-23 || 1-11/8-3/2-18/11 || biyatismic ||
|| 40 || 0-14-16-23 || 1-6/5-3/2-18/11 || biyatismic ||
|| 41 || 0-4-11-27 || 1-11/7-12/7-9/7 || otonal ||
|| 42 || 0-11-16-27 || 1-12/7-3/2-9/7 || ambitonal ||
|| 43 || 0-16-23-27 || 1-3/2-18/11-9/7 || utonal ||
|| 44 || 0-3-7-30 || 1-7/5-11/10-9/5 || otonal ||
|| 45 || 0-3-14-30 || 1-7/5-6/5-9/5 || otonal ||
|| 46 || 0-7-14-30 || 1-11/10-6/5-9/5 || otonal ||
|| 47 || 0-7-16-30 || 1-11/10-3/2-9/5 || biyatismic ||
|| 48 || 0-14-16-30 || 1-6/5-3/2-9/5 || ambitonal ||
|| 49 || 0-7-23-30 || 1-11/10-18/11-9/5 || biyatismic ||
|| 50 || 0-14-23-30 || 1-6/5-18/11-9/5 || biyatismic ||
|| 51 || 0-16-23-30 || 1-3/2-18/11-9/5 || utonal ||
|| 52 || 0-16-27-30 || 1-3/2-9/7-9/5 || utonal ||
|| 53 || 0-23-27-30 || 1-18/11-9/7-9/5 || utonal ||
|| 54 || 0-2-5-32 || 1-5/4-7/4-9/8 || otonal ||
|| 55 || 0-2-9-32 || 1-5/4-11/8-9/8 || otonal ||
|| 56 || 0-5-9-32 || 1-7/4-11/8-9/8 || otonal ||
|| 57 || 0-2-16-32 || 1-5/4-3/2-9/8 || otonal ||
|| 58 || 0-5-16-32 || 1-7/4-3/2-9/8 || otonal ||
|| 59 || 0-9-16-32 || 1-11/8-3/2-9/8 || otonal ||
|| 60 || 0-9-23-32 || 1-11/8-18/11-9/8 || biyatismic ||
|| 61 || 0-16-23-32 || 1-3/2-18/11-9/8 || utonal ||
|| 62 || 0-16-27-32 || 1-3/2-9/7-9/8 || utonal ||
|| 63 || 0-23-27-32 || 1-18/11-9/7-9/8 || utonal ||
|| 64 || 0-16-30-32 || 1-3/2-9/5-9/8 || utonal ||
|| 65 || 0-23-30-32 || 1-18/11-9/5-9/8 || utonal ||
|| 66 || 0-27-30-32 || 1-9/7-9/5-9/8 || utonal ||

=Pentads=
|| Number || Chord || Transversal || Type ||
|| 1 || 0-2-4-7-9 || 1-5/4-11/7-11/10-11/8 || valinorsmic ||
|| 2 || 0-2-5-7-9 || 1-5/4-7/4-11/10-11/8 || valinorsmic ||
|| 3 || 0-2-4-7-11 || 1-5/4-11/7-11/10-12/7 || zeus ||
|| 4 || 0-2-4-9-11 || 1-5/4-11/7-11/8-12/7 || zeus ||
|| 5 || 0-2-7-9-11 || 1-5/4-11/10-11/8-12/7 || zeus ||
|| 6 || 0-4-7-9-11 || 1-11/7-11/10-11/8-12/7 || zeus ||
|| 7 || 0-3-5-7-14 || 1-7/5-7/4-11/10-6/5 || zeus ||
|| 8 || 0-5-7-9-14 || 1-7/4-11/10-11/8-6/5 || zeus ||
|| 9 || 0-7-9-11-14 || 1-11/10-11/8-12/7-6/5 || zeus ||
|| 10 || 0-2-5-7-16 || 1-5/4-7/4-11/10-3/2 || zeus ||
|| 11 || 0-2-5-9-16 || 1-5/4-7/4-11/8-3/2 || otonal ||
|| 12 || 0-2-7-9-16 || 1-5/4-11/10-11/8-3/2 || zeus ||
|| 13 || 0-5-7-9-16 || 1-7/4-11/10-11/8-3/2 || zeus ||
|| 14 || 0-2-7-11-16 || 1-5/4-11/10-12/7-3/2 || zeus ||
|| 15 || 0-2-9-11-16 || 1-5/4-11/8-12/7-3/2 || zeus ||
|| 16 || 0-7-9-11-16 || 1-11/10-11/8-12/7-3/2 || zeus ||
|| 17 || 0-5-7-14-16 || 1-7/4-11/10-6/5-3/2 || zeus ||
|| 18 || 0-5-9-14-16 || 1-7/4-11/8-6/5-3/2 || zeus ||
|| 19 || 0-7-9-14-16 || 1-11/10-11/8-6/5-3/2 || zeus ||
|| 20 || 0-7-11-14-16 || 1-12/11-12/7-6/5-3/2 || utonal ||
|| 21 || 0-9-11-14-16 || 1-11/8-12/7-6/5-3/2 || zeus ||
|| 22 || 0-7-9-14-23 || 1-11/10-11/8-6/5-18/11 || zeus ||
|| 23 || 0-7-9-16-23 || 1-11/10-11/8-3/2-18/11 || biyatismic ||
|| 24 || 0-7-14-16-23 || 1-11/10-6/5-3/2-18/11 || biyatismic ||
|| 25 || 0-9-14-16-23 || 1-11/8-6/5-3/2-18/11 || zeus ||
|| 26 || 0-3-7-14-30 || 1-7/5-11/10-6/5-9/5 || otonal ||
|| 27 || 0-7-14-16-30 || 1-11/10-6/5-3/2-9/5 || biyatismic ||
|| 28 || 0-7-14-23-30 || 1-11/10-6/5-18/11-9/5 || biyatismic ||
|| 29 || 0-7-16-23-30 || 1-11/10-3/2-18/11-9/5 || biyatismic ||
|| 30 || 0-14-16-23-30 || 1-6/5-3/2-18/11-9/5 || biyatismic ||
|| 31 || 0-16-23-27-30 || 1-3/2-18/11-9/7-9/5 || utonal ||
|| 32 || 0-2-5-9-32 || 1-5/4-7/4-11/8-9/8 || otonal ||
|| 33 || 0-2-5-16-32 || 1-5/4-7/4-3/2-9/8 || otonal ||
|| 34 || 0-2-9-16-32 || 1-5/4-11/8-3/2-9/8 || otonal ||
|| 35 || 0-5-9-16-32 || 1-7/4-11/8-3/2-9/8 || otonal ||
|| 36 || 0-9-16-23-32 || 1-11/8-3/2-18/11-9/8 || biyatismic ||
|| 37 || 0-16-23-27-32 || 1-3/2-18/11-9/7-9/8 || utonal ||
|| 38 || 0-16-23-30-32 || 1-3/2-18/11-9/5-9/8 || utonal ||
|| 39 || 0-16-27-30-32 || 1-3/2-9/7-9/5-9/8 || utonal ||
|| 40 || 0-23-27-30-32 || 1-18/11-9/7-9/5-9/8 || utonal ||

=Hexads=
|| Number || Chord || Transversal || Type ||
|| 1 || 0-2-4-7-9-11 || 1-5/4-11/7-11/10-11/8-12/7 || zeus ||
|| 2 || 0-2-5-7-9-16 || 1-5/4-7/4-11/10-11/8-3/2 || zeus ||
|| 3 || 0-2-7-9-11-16 || 1-5/4-11/10-11/8-12/7-3/2 || zeus ||
|| 4 || 0-5-7-9-14-16 || 1-7/4-11/10-11/8-6/5-3/2 || zeus ||
|| 5 || 0-7-9-11-14-16 || 1-11/10-11/8-12/7-6/5-3/2 || zeus ||
|| 6 || 0-7-9-14-16-23 || 1-11/10-11/8-6/5-3/2-18/11 || zeus ||
|| 7 || 0-7-14-16-23-30 || 1-11/10-6/5-3/2-18/11-9/5 || biyatismic ||
|| 8 || 0-2-5-9-16-32 || 1-5/4-7/4-11/8-3/2-9/8 || otonal ||
|| 9 || 0-16-23-27-30-32 || 1-3/2-18/11-9/7-9/5-9/8 || utonal ||

Original HTML content:

<html><head><title>Chords of hemiwur</title></head><body>Below are listed the <a class="wiki_link" href="/Dyadic%20chord">dyadic chords</a> of 11-limit <a class="wiki_link" href="/W%C3%BCrschmidt%20family#Hemiwürschmidt">hemiwur temperament</a>. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 121/120 are biyatismic, by 176/175 valinorsmic, and by 385/384 keenanismic. Chords requiring any two of the above are labeled zeus.<br />
<br />
Hemiwur has MOS of size 6, 7, 13, 19, 25, 31, 37 and 68. The largest chords on these lists have complexity 32, and so would require the 37 note MOS, but there are many chords of much lower complexity, so that the 13-note MOS, for instance, has a couple of hexads, plus many more pentads, tetrads and triads.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Triads"></a><!-- ws:end:WikiTextHeadingRule:0 -->Triads</h1>


<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-2-4<br />
</td>
        <td>1-5/4-11/7<br />
</td>
        <td>valinorsmic<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-2-5<br />
</td>
        <td>1-5/4-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-3-5<br />
</td>
        <td>1-7/5-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-2-7<br />
</td>
        <td>1-5/4-11/10<br />
</td>
        <td>valinorsmic<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-3-7<br />
</td>
        <td>1-7/5-11/10<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-4-7<br />
</td>
        <td>1-11/7-11/10<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>0-5-7<br />
</td>
        <td>1-7/4-11/10<br />
</td>
        <td>valinorsmic<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>0-2-9<br />
</td>
        <td>1-5/4-11/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>0-4-9<br />
</td>
        <td>1-11/7-11/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>0-5-9<br />
</td>
        <td>1-7/4-11/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>0-7-9<br />
</td>
        <td>1-11/10-11/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>0-2-11<br />
</td>
        <td>1-5/4-12/7<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>0-4-11<br />
</td>
        <td>1-11/7-12/7<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>0-7-11<br />
</td>
        <td>1-12/11-12/7<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>0-9-11<br />
</td>
        <td>1-11/8-12/7<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>0-3-14<br />
</td>
        <td>1-7/5-6/5<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>0-5-14<br />
</td>
        <td>1-7/4-6/5<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>0-7-14<br />
</td>
        <td>1-11/10-6/5<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>0-9-14<br />
</td>
        <td>1-11/8-6/5<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>0-11-14<br />
</td>
        <td>1-12/7-6/5<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>0-2-16<br />
</td>
        <td>1-5/4-3/2<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>0-5-16<br />
</td>
        <td>1-7/4-3/2<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>0-7-16<br />
</td>
        <td>1-12/11-3/2<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>0-9-16<br />
</td>
        <td>1-11/8-3/2<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>0-11-16<br />
</td>
        <td>1-12/7-3/2<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>0-14-16<br />
</td>
        <td>1-6/5-3/2<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>0-7-23<br />
</td>
        <td>1-12/11-18/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>0-9-23<br />
</td>
        <td>1-11/8-18/11<br />
</td>
        <td>biyatismic<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>0-14-23<br />
</td>
        <td>1-6/5-18/11<br />
</td>
        <td>biyatismic<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>0-16-23<br />
</td>
        <td>1-3/2-18/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>0-4-27<br />
</td>
        <td>1-11/7-9/7<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>0-11-27<br />
</td>
        <td>1-12/7-9/7<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>0-16-27<br />
</td>
        <td>1-3/2-9/7<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>0-23-27<br />
</td>
        <td>1-18/11-9/7<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>0-3-30<br />
</td>
        <td>1-7/5-9/5<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>0-7-30<br />
</td>
        <td>1-11/10-9/5<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>0-14-30<br />
</td>
        <td>1-6/5-9/5<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>0-16-30<br />
</td>
        <td>1-3/2-9/5<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>0-23-30<br />
</td>
        <td>1-18/11-9/5<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>0-27-30<br />
</td>
        <td>1-9/7-9/5<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>0-2-32<br />
</td>
        <td>1-5/4-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>0-5-32<br />
</td>
        <td>1-7/4-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>0-9-32<br />
</td>
        <td>1-11/8-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>0-16-32<br />
</td>
        <td>1-3/2-9/8<br />
</td>
        <td>ambitonal<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>0-23-32<br />
</td>
        <td>1-18/11-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>0-27-32<br />
</td>
        <td>1-9/7-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>0-30-32<br />
</td>
        <td>1-9/5-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Tetrads"></a><!-- ws:end:WikiTextHeadingRule:2 -->Tetrads</h1>


<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-2-4-7<br />
</td>
        <td>1-5/4-11/7-11/10<br />
</td>
        <td>valinorsmic<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-2-5-7<br />
</td>
        <td>1-5/4-7/4-11/10<br />
</td>
        <td>valinorsmic<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-3-5-7<br />
</td>
        <td>1-7/5-7/4-11/10<br />
</td>
        <td>valinorsmic<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-2-4-9<br />
</td>
        <td>1-5/4-11/7-11/8<br />
</td>
        <td>valinorsmic<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-2-5-9<br />
</td>
        <td>1-5/4-7/4-11/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-2-7-9<br />
</td>
        <td>1-5/4-11/10-11/8<br />
</td>
        <td>valinorsmic<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>0-4-7-9<br />
</td>
        <td>1-11/7-11/10-11/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>0-5-7-9<br />
</td>
        <td>1-7/4-11/10-11/8<br />
</td>
        <td>valinorsmic<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>0-2-4-11<br />
</td>
        <td>1-5/4-11/7-12/7<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>0-2-7-11<br />
</td>
        <td>1-5/4-11/10-12/7<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>0-4-7-11<br />
</td>
        <td>1-11/7-11/10-12/7<br />
</td>
        <td>biyatismic<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>0-2-9-11<br />
</td>
        <td>1-5/4-11/8-12/7<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>0-4-9-11<br />
</td>
        <td>1-11/7-11/8-12/7<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>0-7-9-11<br />
</td>
        <td>1-11/10-11/8-12/7<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>0-3-5-14<br />
</td>
        <td>1-7/5-7/4-6/5<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>0-3-7-14<br />
</td>
        <td>1-7/5-11/10-6/5<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>0-5-7-14<br />
</td>
        <td>1-7/4-11/10-6/5<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>0-5-9-14<br />
</td>
        <td>1-7/4-11/8-6/5<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>0-7-9-14<br />
</td>
        <td>1-11/10-11/8-6/5<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>0-7-11-14<br />
</td>
        <td>1-12/11-12/7-6/5<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>0-9-11-14<br />
</td>
        <td>1-11/8-12/7-6/5<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>0-2-5-16<br />
</td>
        <td>1-5/4-7/4-3/2<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>0-2-7-16<br />
</td>
        <td>1-5/4-11/10-3/2<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>0-5-7-16<br />
</td>
        <td>1-7/4-11/10-3/2<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>0-2-9-16<br />
</td>
        <td>1-5/4-11/8-3/2<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>0-5-9-16<br />
</td>
        <td>1-7/4-11/8-3/2<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>0-7-9-16<br />
</td>
        <td>1-11/10-11/8-3/2<br />
</td>
        <td>biyatismic<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>0-2-11-16<br />
</td>
        <td>1-5/4-12/7-3/2<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>0-7-11-16<br />
</td>
        <td>1-12/11-12/7-3/2<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>0-9-11-16<br />
</td>
        <td>1-11/8-12/7-3/2<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>0-5-14-16<br />
</td>
        <td>1-7/4-6/5-3/2<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>0-7-14-16<br />
</td>
        <td>1-12/11-6/5-3/2<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>0-9-14-16<br />
</td>
        <td>1-11/8-6/5-3/2<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>0-11-14-16<br />
</td>
        <td>1-12/7-6/5-3/2<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>0-7-9-23<br />
</td>
        <td>1-11/10-11/8-18/11<br />
</td>
        <td>biyatismic<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>0-7-14-23<br />
</td>
        <td>1-11/10-6/5-18/11<br />
</td>
        <td>biyatismic<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>0-9-14-23<br />
</td>
        <td>1-11/8-6/5-18/11<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>0-7-16-23<br />
</td>
        <td>1-12/11-3/2-18/11<br />
</td>
        <td>ambitonal<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>0-9-16-23<br />
</td>
        <td>1-11/8-3/2-18/11<br />
</td>
        <td>biyatismic<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>0-14-16-23<br />
</td>
        <td>1-6/5-3/2-18/11<br />
</td>
        <td>biyatismic<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>0-4-11-27<br />
</td>
        <td>1-11/7-12/7-9/7<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>0-11-16-27<br />
</td>
        <td>1-12/7-3/2-9/7<br />
</td>
        <td>ambitonal<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>0-16-23-27<br />
</td>
        <td>1-3/2-18/11-9/7<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>0-3-7-30<br />
</td>
        <td>1-7/5-11/10-9/5<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>0-3-14-30<br />
</td>
        <td>1-7/5-6/5-9/5<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>0-7-14-30<br />
</td>
        <td>1-11/10-6/5-9/5<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>0-7-16-30<br />
</td>
        <td>1-11/10-3/2-9/5<br />
</td>
        <td>biyatismic<br />
</td>
    </tr>
    <tr>
        <td>48<br />
</td>
        <td>0-14-16-30<br />
</td>
        <td>1-6/5-3/2-9/5<br />
</td>
        <td>ambitonal<br />
</td>
    </tr>
    <tr>
        <td>49<br />
</td>
        <td>0-7-23-30<br />
</td>
        <td>1-11/10-18/11-9/5<br />
</td>
        <td>biyatismic<br />
</td>
    </tr>
    <tr>
        <td>50<br />
</td>
        <td>0-14-23-30<br />
</td>
        <td>1-6/5-18/11-9/5<br />
</td>
        <td>biyatismic<br />
</td>
    </tr>
    <tr>
        <td>51<br />
</td>
        <td>0-16-23-30<br />
</td>
        <td>1-3/2-18/11-9/5<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>52<br />
</td>
        <td>0-16-27-30<br />
</td>
        <td>1-3/2-9/7-9/5<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>53<br />
</td>
        <td>0-23-27-30<br />
</td>
        <td>1-18/11-9/7-9/5<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>54<br />
</td>
        <td>0-2-5-32<br />
</td>
        <td>1-5/4-7/4-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>55<br />
</td>
        <td>0-2-9-32<br />
</td>
        <td>1-5/4-11/8-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>56<br />
</td>
        <td>0-5-9-32<br />
</td>
        <td>1-7/4-11/8-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>57<br />
</td>
        <td>0-2-16-32<br />
</td>
        <td>1-5/4-3/2-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>58<br />
</td>
        <td>0-5-16-32<br />
</td>
        <td>1-7/4-3/2-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>59<br />
</td>
        <td>0-9-16-32<br />
</td>
        <td>1-11/8-3/2-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>60<br />
</td>
        <td>0-9-23-32<br />
</td>
        <td>1-11/8-18/11-9/8<br />
</td>
        <td>biyatismic<br />
</td>
    </tr>
    <tr>
        <td>61<br />
</td>
        <td>0-16-23-32<br />
</td>
        <td>1-3/2-18/11-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>62<br />
</td>
        <td>0-16-27-32<br />
</td>
        <td>1-3/2-9/7-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>63<br />
</td>
        <td>0-23-27-32<br />
</td>
        <td>1-18/11-9/7-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>64<br />
</td>
        <td>0-16-30-32<br />
</td>
        <td>1-3/2-9/5-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>65<br />
</td>
        <td>0-23-30-32<br />
</td>
        <td>1-18/11-9/5-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>66<br />
</td>
        <td>0-27-30-32<br />
</td>
        <td>1-9/7-9/5-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Pentads"></a><!-- ws:end:WikiTextHeadingRule:4 -->Pentads</h1>


<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-2-4-7-9<br />
</td>
        <td>1-5/4-11/7-11/10-11/8<br />
</td>
        <td>valinorsmic<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-2-5-7-9<br />
</td>
        <td>1-5/4-7/4-11/10-11/8<br />
</td>
        <td>valinorsmic<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-2-4-7-11<br />
</td>
        <td>1-5/4-11/7-11/10-12/7<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-2-4-9-11<br />
</td>
        <td>1-5/4-11/7-11/8-12/7<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-2-7-9-11<br />
</td>
        <td>1-5/4-11/10-11/8-12/7<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-4-7-9-11<br />
</td>
        <td>1-11/7-11/10-11/8-12/7<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>0-3-5-7-14<br />
</td>
        <td>1-7/5-7/4-11/10-6/5<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>0-5-7-9-14<br />
</td>
        <td>1-7/4-11/10-11/8-6/5<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>0-7-9-11-14<br />
</td>
        <td>1-11/10-11/8-12/7-6/5<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>0-2-5-7-16<br />
</td>
        <td>1-5/4-7/4-11/10-3/2<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>0-2-5-9-16<br />
</td>
        <td>1-5/4-7/4-11/8-3/2<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>0-2-7-9-16<br />
</td>
        <td>1-5/4-11/10-11/8-3/2<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>0-5-7-9-16<br />
</td>
        <td>1-7/4-11/10-11/8-3/2<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>0-2-7-11-16<br />
</td>
        <td>1-5/4-11/10-12/7-3/2<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>0-2-9-11-16<br />
</td>
        <td>1-5/4-11/8-12/7-3/2<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>0-7-9-11-16<br />
</td>
        <td>1-11/10-11/8-12/7-3/2<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>0-5-7-14-16<br />
</td>
        <td>1-7/4-11/10-6/5-3/2<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>0-5-9-14-16<br />
</td>
        <td>1-7/4-11/8-6/5-3/2<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>0-7-9-14-16<br />
</td>
        <td>1-11/10-11/8-6/5-3/2<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>0-7-11-14-16<br />
</td>
        <td>1-12/11-12/7-6/5-3/2<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>0-9-11-14-16<br />
</td>
        <td>1-11/8-12/7-6/5-3/2<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>0-7-9-14-23<br />
</td>
        <td>1-11/10-11/8-6/5-18/11<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>0-7-9-16-23<br />
</td>
        <td>1-11/10-11/8-3/2-18/11<br />
</td>
        <td>biyatismic<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>0-7-14-16-23<br />
</td>
        <td>1-11/10-6/5-3/2-18/11<br />
</td>
        <td>biyatismic<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>0-9-14-16-23<br />
</td>
        <td>1-11/8-6/5-3/2-18/11<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>0-3-7-14-30<br />
</td>
        <td>1-7/5-11/10-6/5-9/5<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>0-7-14-16-30<br />
</td>
        <td>1-11/10-6/5-3/2-9/5<br />
</td>
        <td>biyatismic<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>0-7-14-23-30<br />
</td>
        <td>1-11/10-6/5-18/11-9/5<br />
</td>
        <td>biyatismic<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>0-7-16-23-30<br />
</td>
        <td>1-11/10-3/2-18/11-9/5<br />
</td>
        <td>biyatismic<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>0-14-16-23-30<br />
</td>
        <td>1-6/5-3/2-18/11-9/5<br />
</td>
        <td>biyatismic<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>0-16-23-27-30<br />
</td>
        <td>1-3/2-18/11-9/7-9/5<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>0-2-5-9-32<br />
</td>
        <td>1-5/4-7/4-11/8-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>0-2-5-16-32<br />
</td>
        <td>1-5/4-7/4-3/2-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>0-2-9-16-32<br />
</td>
        <td>1-5/4-11/8-3/2-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>0-5-9-16-32<br />
</td>
        <td>1-7/4-11/8-3/2-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>0-9-16-23-32<br />
</td>
        <td>1-11/8-3/2-18/11-9/8<br />
</td>
        <td>biyatismic<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>0-16-23-27-32<br />
</td>
        <td>1-3/2-18/11-9/7-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>0-16-23-30-32<br />
</td>
        <td>1-3/2-18/11-9/5-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>0-16-27-30-32<br />
</td>
        <td>1-3/2-9/7-9/5-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>0-23-27-30-32<br />
</td>
        <td>1-18/11-9/7-9/5-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Hexads"></a><!-- ws:end:WikiTextHeadingRule:6 -->Hexads</h1>


<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-2-4-7-9-11<br />
</td>
        <td>1-5/4-11/7-11/10-11/8-12/7<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-2-5-7-9-16<br />
</td>
        <td>1-5/4-7/4-11/10-11/8-3/2<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-2-7-9-11-16<br />
</td>
        <td>1-5/4-11/10-11/8-12/7-3/2<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-5-7-9-14-16<br />
</td>
        <td>1-7/4-11/10-11/8-6/5-3/2<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-7-9-11-14-16<br />
</td>
        <td>1-11/10-11/8-12/7-6/5-3/2<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-7-9-14-16-23<br />
</td>
        <td>1-11/10-11/8-6/5-3/2-18/11<br />
</td>
        <td>zeus<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>0-7-14-16-23-30<br />
</td>
        <td>1-11/10-6/5-3/2-18/11-9/5<br />
</td>
        <td>biyatismic<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>0-2-5-9-16-32<br />
</td>
        <td>1-5/4-7/4-11/8-3/2-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>0-16-23-27-30-32<br />
</td>
        <td>1-3/2-18/11-9/7-9/5-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
</table>

</body></html>