Bohpier/Chords

Revision as of 00:18, 8 January 2012 by Wikispaces>keenanpepper (**Imported revision 290308213 - Original comment: **)

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author keenanpepper and made on 2012-01-08 00:18:34 UTC.
The original revision id was 290308213.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Sensamagic clan#Bohpier|bohpier temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 245/243 sensamagic, by 100/99 ptolemismic, and by 1344/1331 hemimin. Chords requiring any two of 540/539, 245/243 or 100/99 are labeled octarod.

Bohpier has MOS of size 8, 9, 17, 25, 33, 41 and 49, and it may be seen that even the eight-note MOS comes equipped with some triads and tetrads. It should also be noted that the generator chain of 7-limit bohpier is the [[Bohlen-Pierce]] scale, and the same is true of 11-limit bohpier if we do not regard 11/4 as a forbidden interval because the denominator is an even number. Hence, every chord listed below has a voicing which makes it a chord of Bohlen-Pierce, showing Bohlen-Pierce contains many essentially tempered chords. The listed transversals my be converted to Bohlen-Pierce transversals by adjusting up an octave past 9/5~20/11, so that 7/6 becomes 7/3, 14/11 becomes 28/11, 11/8 becomes 11/4, 3/2 becomes 3, 18/11 becomes 36/11, 5/4 becomes 5, 7/4 becomes 7, and 9/8 becomes 9. It should also be noted that 13-limit bohpier, and hence 13-limit Bohlen-Pierce, has many more 13-limit essentially tempered chords.

In strictly traditional Bohlen-Pierce theory, only ratios with odd numbers are considered, such as produce coincident partials on instruments with only odd harmonics (e.g. an ideal clarinet). The essentially tempered chords of this 3.5.7 system are much more limited - besides the JI chords (otonal, utonal, and ambitonal), only the [[sensamagic chords]] exist in strict Bohlen-Pierce.

=Triads= 
|| Number || Chord || Transversal || Type ||
|| 1 || 0-1-4 || 1-12/11-7/5 || swetismic ||
|| 2 || 0-3-4 || 1-9/7-7/5 || swetismic ||
|| 3 || 0-3-6 || 1-9/7-5/3 || sensamagic ||
|| 4 || 0-1-7 || 1-12/11-20/11 || otonal ||
|| 5 || 0-3-7 || 1-9/7-9/5 || utonal ||
|| 6 || 0-4-7 || 1-7/5-9/5 || otonal ||
|| 7 || 0-6-7 || 1-5/3-20/11 || utonal ||
|| 8 || 0-3-10 || 1-9/7-7/6 || sensamagic ||
|| 9 || 0-4-10 || 1-7/5-7/6 || utonal ||
|| 10 || 0-6-10 || 1-5/3-7/6 || otonal ||
|| 11 || 0-7-10 || 1-9/5-7/6 || sensamagic ||
|| 12 || 0-1-11 || 1-12/11-14/11 || otonal ||
|| 13 || 0-4-11 || 1-7/5-14/11 || utonal ||
|| 14 || 0-7-11 || 1-20/11-14/11 || otonal ||
|| 15 || 0-10-11 || 1-7/6-14/11 || utonal ||
|| 16 || 0-1-12 || 1-12/11-11/8 || hemimin ||
|| 17 || 0-6-12 || 1-5/3-11/8 || ptolemismic ||
|| 18 || 0-11-12 || 1-14/11-11/8 || hemimin ||
|| 19 || 0-1-13 || 1-12/11-3/2 || utonal ||
|| 20 || 0-3-13 || 1-9/7-3/2 || utonal ||
|| 21 || 0-6-13 || 1-5/3-3/2 || otonal ||
|| 22 || 0-7-13 || 1-9/5-3/2 || utonal ||
|| 23 || 0-10-13 || 1-7/6-3/2 || otonal ||
|| 24 || 0-12-13 || 1-11/8-3/2 || otonal ||
|| 25 || 0-1-14 || 1-12/11-18/11 || otonal ||
|| 26 || 0-3-14 || 1-9/7-18/11 || utonal ||
|| 27 || 0-4-14 || 1-7/5-18/11 || swetismic ||
|| 28 || 0-7-14 || 1-9/5-18/11 || utonal ||
|| 29 || 0-10-14 || 1-7/6-18/11 || swetismic ||
|| 30 || 0-11-14 || 1-14/11-18/11 || otonal ||
|| 31 || 0-13-14 || 1-3/2-18/11 || utonal ||
|| 32 || 0-6-19 || 1-5/3-5/4 || utonal ||
|| 33 || 0-7-19 || 1-20/11-5/4 || utonal ||
|| 34 || 0-12-19 || 1-11/8-5/4 || otonal ||
|| 35 || 0-13-19 || 1-3/2-5/4 || otonal ||
|| 36 || 0-4-23 || 1-7/5-7/4 || utonal ||
|| 37 || 0-10-23 || 1-7/6-7/4 || utonal ||
|| 38 || 0-11-23 || 1-14/11-7/4 || utonal ||
|| 39 || 0-12-23 || 1-11/8-7/4 || otonal ||
|| 40 || 0-13-23 || 1-3/2-7/4 || otonal ||
|| 41 || 0-19-23 || 1-5/4-7/4 || otonal ||
|| 42 || 0-3-26 || 1-9/7-9/8 || utonal ||
|| 43 || 0-7-26 || 1-9/5-9/8 || utonal ||
|| 44 || 0-12-26 || 1-11/8-9/8 || otonal ||
|| 45 || 0-13-26 || 1-3/2-9/8 || ambitonal ||
|| 46 || 0-14-26 || 1-18/11-9/8 || utonal ||
|| 47 || 0-19-26 || 1-5/4-9/8 || otonal ||
|| 48 || 0-23-26 || 1-7/4-9/8 || otonal ||

=Tetrads= 
|| Number || Chord || Transversal || Type ||
|| 1 || 0-1-4-7 || 1-12/11-7/5-9/5 || octarod ||
|| 2 || 0-3-4-7 || 1-9/7-7/5-9/5 || swetismic ||
|| 3 || 0-3-6-7 || 1-9/7-5/3-9/5 || octarod ||
|| 4 || 0-3-4-10 || 1-9/7-7/5-7/6 || octarod ||
|| 5 || 0-3-6-10 || 1-9/7-5/3-7/6 || sensamagic ||
|| 6 || 0-3-7-10 || 1-9/7-9/5-7/6 || sensamagic ||
|| 7 || 0-4-7-10 || 1-7/5-9/5-7/6 || sensamagic ||
|| 8 || 0-6-7-10 || 1-5/3-9/5-7/6 || octarod ||
|| 9 || 0-1-4-11 || 1-12/11-7/5-14/11 || octarod ||
|| 10 || 0-1-7-11 || 1-12/11-20/11-14/11 || otonal ||
|| 11 || 0-4-7-11 || 1-7/5-9/5-14/11 || ptolemismic ||
|| 12 || 0-4-10-11 || 1-7/5-7/6-14/11 || utonal ||
|| 13 || 0-7-10-11 || 1-9/5-7/6-14/11 || octarod ||
|| 14 || 0-1-11-12 || 1-12/11-14/11-11/8 || hemimin ||
|| 15 || 0-3-6-13 || 1-9/7-5/3-3/2 || sensamagic ||
|| 16 || 0-1-7-13 || 1-12/11-9/5-3/2 || ptolemismic ||
|| 17 || 0-3-7-13 || 1-9/7-9/5-3/2 || utonal ||
|| 18 || 0-6-7-13 || 1-5/3-9/5-3/2 || ptolemismic ||
|| 19 || 0-3-10-13 || 1-9/7-7/6-3/2 || sensamagic ||
|| 20 || 0-6-10-13 || 1-5/3-7/6-3/2 || otonal ||
|| 21 || 0-7-10-13 || 1-9/5-7/6-3/2 || sensamagic ||
|| 22 || 0-1-12-13 || 1-12/11-11/8-3/2 || hemimin ||
|| 23 || 0-6-12-13 || 1-5/3-11/8-3/2 || ptolemismic ||
|| 24 || 0-1-4-14 || 1-12/11-7/5-18/11 || swetismic ||
|| 25 || 0-3-4-14 || 1-9/7-7/5-18/11 || swetismic ||
|| 26 || 0-1-7-14 || 1-12/11-20/11-18/11 || otonal ||
|| 27 || 0-3-7-14 || 1-9/7-9/5-18/11 || utonal ||
|| 28 || 0-4-7-14 || 1-7/5-9/5-18/11 || octarod ||
|| 29 || 0-3-10-14 || 1-9/7-7/6-18/11 || octarod ||
|| 30 || 0-4-10-14 || 1-7/5-7/6-18/11 || swetismic ||
|| 31 || 0-7-10-14 || 1-9/5-7/6-18/11 || octarod ||
|| 32 || 0-1-11-14 || 1-12/11-14/11-18/11 || otonal ||
|| 33 || 0-4-11-14 || 1-7/5-14/11-18/11 || octarod ||
|| 34 || 0-7-11-14 || 1-20/11-14/11-18/11 || otonal ||
|| 35 || 0-10-11-14 || 1-7/6-14/11-18/11 || swetismic ||
|| 36 || 0-1-13-14 || 1-12/11-3/2-18/11 || ambitonal ||
|| 37 || 0-3-13-14 || 1-9/7-3/2-18/11 || utonal ||
|| 38 || 0-7-13-14 || 1-9/5-3/2-18/11 || utonal ||
|| 39 || 0-10-13-14 || 1-7/6-3/2-18/11 || swetismic ||
|| 40 || 0-6-7-19 || 1-5/3-20/11-5/4 || utonal ||
|| 41 || 0-6-12-19 || 1-5/3-11/8-5/4 || ptolemismic ||
|| 42 || 0-6-13-19 || 1-5/3-3/2-5/4 || ambitonal ||
|| 43 || 0-7-13-19 || 1-9/5-3/2-5/4 || ptolemismic ||
|| 44 || 0-12-13-19 || 1-11/8-3/2-5/4 || otonal ||
|| 45 || 0-4-10-23 || 1-7/5-7/6-7/4 || utonal ||
|| 46 || 0-4-11-23 || 1-7/5-14/11-7/4 || utonal ||
|| 47 || 0-10-11-23 || 1-7/6-14/11-7/4 || utonal ||
|| 48 || 0-11-12-23 || 1-14/11-11/8-7/4 || hemimin ||
|| 49 || 0-10-13-23 || 1-7/6-3/2-7/4 || ambitonal ||
|| 50 || 0-12-13-23 || 1-11/8-3/2-7/4 || otonal ||
|| 51 || 0-12-19-23 || 1-11/8-5/4-7/4 || otonal ||
|| 52 || 0-13-19-23 || 1-3/2-5/4-7/4 || otonal ||
|| 53 || 0-3-7-26 || 1-9/7-9/5-9/8 || utonal ||
|| 54 || 0-3-13-26 || 1-9/7-3/2-9/8 || utonal ||
|| 55 || 0-7-13-26 || 1-9/5-3/2-9/8 || utonal ||
|| 56 || 0-12-13-26 || 1-11/8-3/2-9/8 || otonal ||
|| 57 || 0-3-14-26 || 1-9/7-18/11-9/8 || utonal ||
|| 58 || 0-7-14-26 || 1-9/5-18/11-9/8 || utonal ||
|| 59 || 0-13-14-26 || 1-3/2-18/11-9/8 || utonal ||
|| 60 || 0-7-19-26 || 1-9/5-5/4-9/8 || ptolemismic ||
|| 61 || 0-12-19-26 || 1-11/8-5/4-9/8 || otonal ||
|| 62 || 0-13-19-26 || 1-3/2-5/4-9/8 || otonal ||
|| 63 || 0-12-23-26 || 1-11/8-7/4-9/8 || otonal ||
|| 64 || 0-13-23-26 || 1-3/2-7/4-9/8 || otonal ||
|| 65 || 0-19-23-26 || 1-5/4-7/4-9/8 || otonal ||

=Pentads= 
|| Number || Chord || Transversal || Type ||
|| 1 || 0-3-4-7-10 || 1-9/7-7/5-9/5-7/6 || octarod ||
|| 2 || 0-3-6-7-10 || 1-9/7-5/3-9/5-7/6 || octarod ||
|| 3 || 0-1-4-7-11 || 1-12/11-7/5-9/5-14/11 || octarod ||
|| 4 || 0-4-7-10-11 || 1-7/5-9/5-7/6-14/11 || octarod ||
|| 5 || 0-3-6-7-13 || 1-9/7-5/3-9/5-3/2 || octarod ||
|| 6 || 0-3-6-10-13 || 1-9/7-5/3-7/6-3/2 || sensamagic ||
|| 7 || 0-3-7-10-13 || 1-9/7-9/5-7/6-3/2 || sensamagic ||
|| 8 || 0-6-7-10-13 || 1-5/3-9/5-7/6-3/2 || octarod ||
|| 9 || 0-1-4-7-14 || 1-12/11-7/5-9/5-18/11 || octarod ||
|| 10 || 0-3-4-7-14 || 1-9/7-7/5-9/5-18/11 || octarod ||
|| 11 || 0-3-4-10-14 || 1-9/7-7/5-7/6-18/11 || octarod ||
|| 12 || 0-3-7-10-14 || 1-9/7-9/5-7/6-18/11 || octarod ||
|| 13 || 0-4-7-10-14 || 1-7/5-9/5-7/6-18/11 || octarod ||
|| 14 || 0-1-4-11-14 || 1-12/11-7/5-14/11-18/11 || octarod ||
|| 15 || 0-1-7-11-14 || 1-12/11-20/11-14/11-18/11 || otonal ||
|| 16 || 0-4-7-11-14 || 1-7/5-9/5-14/11-18/11 || octarod ||
|| 17 || 0-4-10-11-14 || 1-7/5-7/6-14/11-18/11 || octarod ||
|| 18 || 0-7-10-11-14 || 1-9/5-7/6-14/11-18/11 || octarod ||
|| 19 || 0-1-7-13-14 || 1-12/11-9/5-3/2-18/11 || ptolemismic ||
|| 20 || 0-3-7-13-14 || 1-9/7-9/5-3/2-18/11 || utonal ||
|| 21 || 0-3-10-13-14 || 1-9/7-7/6-3/2-18/11 || octarod ||
|| 22 || 0-7-10-13-14 || 1-9/5-7/6-3/2-18/11 || octarod ||
|| 23 || 0-6-7-13-19 || 1-5/3-9/5-3/2-5/4 || ptolemismic ||
|| 24 || 0-6-12-13-19 || 1-5/3-11/8-3/2-5/4 || ptolemismic ||
|| 25 || 0-4-10-11-23 || 1-7/5-7/6-14/11-7/4 || utonal ||
|| 26 || 0-12-13-19-23 || 1-11/8-3/2-5/4-7/4 || otonal ||
|| 27 || 0-3-7-13-26 || 1-9/7-9/5-3/2-9/8 || utonal ||
|| 28 || 0-3-7-14-26 || 1-9/7-9/5-18/11-9/8 || utonal ||
|| 29 || 0-3-13-14-26 || 1-9/7-3/2-18/11-9/8 || utonal ||
|| 30 || 0-7-13-14-26 || 1-9/5-3/2-18/11-9/8 || utonal ||
|| 31 || 0-7-13-19-26 || 1-9/5-3/2-5/4-9/8 || ptolemismic ||
|| 32 || 0-12-13-19-26 || 1-11/8-3/2-5/4-9/8 || otonal ||
|| 33 || 0-12-13-23-26 || 1-11/8-3/2-7/4-9/8 || otonal ||
|| 34 || 0-12-19-23-26 || 1-11/8-5/4-7/4-9/8 || otonal ||
|| 35 || 0-13-19-23-26 || 1-3/2-5/4-7/4-9/8 || otonal ||

=Hexads= 
|| Number || Chord || Transversal || Type ||
|| 1 || 0-3-6-7-10-13 || 1-9/7-5/3-9/5-7/6-3/2 || octarod ||
|| 2 || 0-3-4-7-10-14 || 1-9/7-7/5-9/5-7/6-18/11 || octarod ||
|| 3 || 0-1-4-7-11-14 || 1-12/11-7/5-9/5-14/11-18/11 || octarod ||
|| 4 || 0-4-7-10-11-14 || 1-7/5-9/5-7/6-14/11-18/11 || octarod ||
|| 5 || 0-3-7-10-13-14 || 1-9/7-9/5-7/6-3/2-18/11 || octarod ||
|| 6 || 0-3-7-13-14-26 || 1-9/7-9/5-3/2-18/11-9/8 || utonal ||
|| 7 || 0-12-13-19-23-26 || 1-11/8-3/2-5/4-7/4-9/8 || otonal ||

Original HTML content:

<html><head><title>Chords of bohpier</title></head><body>Below are listed the <a class="wiki_link" href="/Dyadic%20chord">dyadic chords</a> of 11-limit <a class="wiki_link" href="/Sensamagic%20clan#Bohpier">bohpier temperament</a>. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 245/243 sensamagic, by 100/99 ptolemismic, and by 1344/1331 hemimin. Chords requiring any two of 540/539, 245/243 or 100/99 are labeled octarod.<br />
<br />
Bohpier has MOS of size 8, 9, 17, 25, 33, 41 and 49, and it may be seen that even the eight-note MOS comes equipped with some triads and tetrads. It should also be noted that the generator chain of 7-limit bohpier is the <a class="wiki_link" href="/Bohlen-Pierce">Bohlen-Pierce</a> scale, and the same is true of 11-limit bohpier if we do not regard 11/4 as a forbidden interval because the denominator is an even number. Hence, every chord listed below has a voicing which makes it a chord of Bohlen-Pierce, showing Bohlen-Pierce contains many essentially tempered chords. The listed transversals my be converted to Bohlen-Pierce transversals by adjusting up an octave past 9/5~20/11, so that 7/6 becomes 7/3, 14/11 becomes 28/11, 11/8 becomes 11/4, 3/2 becomes 3, 18/11 becomes 36/11, 5/4 becomes 5, 7/4 becomes 7, and 9/8 becomes 9. It should also be noted that 13-limit bohpier, and hence 13-limit Bohlen-Pierce, has many more 13-limit essentially tempered chords.<br />
<br />
In strictly traditional Bohlen-Pierce theory, only ratios with odd numbers are considered, such as produce coincident partials on instruments with only odd harmonics (e.g. an ideal clarinet). The essentially tempered chords of this 3.5.7 system are much more limited - besides the JI chords (otonal, utonal, and ambitonal), only the <a class="wiki_link" href="/sensamagic%20chords">sensamagic chords</a> exist in strict Bohlen-Pierce.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Triads"></a><!-- ws:end:WikiTextHeadingRule:0 -->Triads</h1>
 

<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-1-4<br />
</td>
        <td>1-12/11-7/5<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-3-4<br />
</td>
        <td>1-9/7-7/5<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-3-6<br />
</td>
        <td>1-9/7-5/3<br />
</td>
        <td>sensamagic<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-1-7<br />
</td>
        <td>1-12/11-20/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-3-7<br />
</td>
        <td>1-9/7-9/5<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-4-7<br />
</td>
        <td>1-7/5-9/5<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>0-6-7<br />
</td>
        <td>1-5/3-20/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>0-3-10<br />
</td>
        <td>1-9/7-7/6<br />
</td>
        <td>sensamagic<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>0-4-10<br />
</td>
        <td>1-7/5-7/6<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>0-6-10<br />
</td>
        <td>1-5/3-7/6<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>0-7-10<br />
</td>
        <td>1-9/5-7/6<br />
</td>
        <td>sensamagic<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>0-1-11<br />
</td>
        <td>1-12/11-14/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>0-4-11<br />
</td>
        <td>1-7/5-14/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>0-7-11<br />
</td>
        <td>1-20/11-14/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>0-10-11<br />
</td>
        <td>1-7/6-14/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>0-1-12<br />
</td>
        <td>1-12/11-11/8<br />
</td>
        <td>hemimin<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>0-6-12<br />
</td>
        <td>1-5/3-11/8<br />
</td>
        <td>ptolemismic<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>0-11-12<br />
</td>
        <td>1-14/11-11/8<br />
</td>
        <td>hemimin<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>0-1-13<br />
</td>
        <td>1-12/11-3/2<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>0-3-13<br />
</td>
        <td>1-9/7-3/2<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>0-6-13<br />
</td>
        <td>1-5/3-3/2<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>0-7-13<br />
</td>
        <td>1-9/5-3/2<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>0-10-13<br />
</td>
        <td>1-7/6-3/2<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>0-12-13<br />
</td>
        <td>1-11/8-3/2<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>0-1-14<br />
</td>
        <td>1-12/11-18/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>0-3-14<br />
</td>
        <td>1-9/7-18/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>0-4-14<br />
</td>
        <td>1-7/5-18/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>0-7-14<br />
</td>
        <td>1-9/5-18/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>0-10-14<br />
</td>
        <td>1-7/6-18/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>0-11-14<br />
</td>
        <td>1-14/11-18/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>0-13-14<br />
</td>
        <td>1-3/2-18/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>0-6-19<br />
</td>
        <td>1-5/3-5/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>0-7-19<br />
</td>
        <td>1-20/11-5/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>0-12-19<br />
</td>
        <td>1-11/8-5/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>0-13-19<br />
</td>
        <td>1-3/2-5/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>0-4-23<br />
</td>
        <td>1-7/5-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>0-10-23<br />
</td>
        <td>1-7/6-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>0-11-23<br />
</td>
        <td>1-14/11-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>0-12-23<br />
</td>
        <td>1-11/8-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>0-13-23<br />
</td>
        <td>1-3/2-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>0-19-23<br />
</td>
        <td>1-5/4-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>0-3-26<br />
</td>
        <td>1-9/7-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>0-7-26<br />
</td>
        <td>1-9/5-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>0-12-26<br />
</td>
        <td>1-11/8-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>0-13-26<br />
</td>
        <td>1-3/2-9/8<br />
</td>
        <td>ambitonal<br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>0-14-26<br />
</td>
        <td>1-18/11-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>0-19-26<br />
</td>
        <td>1-5/4-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>48<br />
</td>
        <td>0-23-26<br />
</td>
        <td>1-7/4-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Tetrads"></a><!-- ws:end:WikiTextHeadingRule:2 -->Tetrads</h1>
 

<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-1-4-7<br />
</td>
        <td>1-12/11-7/5-9/5<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-3-4-7<br />
</td>
        <td>1-9/7-7/5-9/5<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-3-6-7<br />
</td>
        <td>1-9/7-5/3-9/5<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-3-4-10<br />
</td>
        <td>1-9/7-7/5-7/6<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-3-6-10<br />
</td>
        <td>1-9/7-5/3-7/6<br />
</td>
        <td>sensamagic<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-3-7-10<br />
</td>
        <td>1-9/7-9/5-7/6<br />
</td>
        <td>sensamagic<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>0-4-7-10<br />
</td>
        <td>1-7/5-9/5-7/6<br />
</td>
        <td>sensamagic<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>0-6-7-10<br />
</td>
        <td>1-5/3-9/5-7/6<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>0-1-4-11<br />
</td>
        <td>1-12/11-7/5-14/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>0-1-7-11<br />
</td>
        <td>1-12/11-20/11-14/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>0-4-7-11<br />
</td>
        <td>1-7/5-9/5-14/11<br />
</td>
        <td>ptolemismic<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>0-4-10-11<br />
</td>
        <td>1-7/5-7/6-14/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>0-7-10-11<br />
</td>
        <td>1-9/5-7/6-14/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>0-1-11-12<br />
</td>
        <td>1-12/11-14/11-11/8<br />
</td>
        <td>hemimin<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>0-3-6-13<br />
</td>
        <td>1-9/7-5/3-3/2<br />
</td>
        <td>sensamagic<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>0-1-7-13<br />
</td>
        <td>1-12/11-9/5-3/2<br />
</td>
        <td>ptolemismic<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>0-3-7-13<br />
</td>
        <td>1-9/7-9/5-3/2<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>0-6-7-13<br />
</td>
        <td>1-5/3-9/5-3/2<br />
</td>
        <td>ptolemismic<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>0-3-10-13<br />
</td>
        <td>1-9/7-7/6-3/2<br />
</td>
        <td>sensamagic<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>0-6-10-13<br />
</td>
        <td>1-5/3-7/6-3/2<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>0-7-10-13<br />
</td>
        <td>1-9/5-7/6-3/2<br />
</td>
        <td>sensamagic<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>0-1-12-13<br />
</td>
        <td>1-12/11-11/8-3/2<br />
</td>
        <td>hemimin<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>0-6-12-13<br />
</td>
        <td>1-5/3-11/8-3/2<br />
</td>
        <td>ptolemismic<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>0-1-4-14<br />
</td>
        <td>1-12/11-7/5-18/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>0-3-4-14<br />
</td>
        <td>1-9/7-7/5-18/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>0-1-7-14<br />
</td>
        <td>1-12/11-20/11-18/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>0-3-7-14<br />
</td>
        <td>1-9/7-9/5-18/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>0-4-7-14<br />
</td>
        <td>1-7/5-9/5-18/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>0-3-10-14<br />
</td>
        <td>1-9/7-7/6-18/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>0-4-10-14<br />
</td>
        <td>1-7/5-7/6-18/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>0-7-10-14<br />
</td>
        <td>1-9/5-7/6-18/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>0-1-11-14<br />
</td>
        <td>1-12/11-14/11-18/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>0-4-11-14<br />
</td>
        <td>1-7/5-14/11-18/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>0-7-11-14<br />
</td>
        <td>1-20/11-14/11-18/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>0-10-11-14<br />
</td>
        <td>1-7/6-14/11-18/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>0-1-13-14<br />
</td>
        <td>1-12/11-3/2-18/11<br />
</td>
        <td>ambitonal<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>0-3-13-14<br />
</td>
        <td>1-9/7-3/2-18/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>0-7-13-14<br />
</td>
        <td>1-9/5-3/2-18/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>0-10-13-14<br />
</td>
        <td>1-7/6-3/2-18/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>0-6-7-19<br />
</td>
        <td>1-5/3-20/11-5/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>0-6-12-19<br />
</td>
        <td>1-5/3-11/8-5/4<br />
</td>
        <td>ptolemismic<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>0-6-13-19<br />
</td>
        <td>1-5/3-3/2-5/4<br />
</td>
        <td>ambitonal<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>0-7-13-19<br />
</td>
        <td>1-9/5-3/2-5/4<br />
</td>
        <td>ptolemismic<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>0-12-13-19<br />
</td>
        <td>1-11/8-3/2-5/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>0-4-10-23<br />
</td>
        <td>1-7/5-7/6-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>0-4-11-23<br />
</td>
        <td>1-7/5-14/11-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>0-10-11-23<br />
</td>
        <td>1-7/6-14/11-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>48<br />
</td>
        <td>0-11-12-23<br />
</td>
        <td>1-14/11-11/8-7/4<br />
</td>
        <td>hemimin<br />
</td>
    </tr>
    <tr>
        <td>49<br />
</td>
        <td>0-10-13-23<br />
</td>
        <td>1-7/6-3/2-7/4<br />
</td>
        <td>ambitonal<br />
</td>
    </tr>
    <tr>
        <td>50<br />
</td>
        <td>0-12-13-23<br />
</td>
        <td>1-11/8-3/2-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>51<br />
</td>
        <td>0-12-19-23<br />
</td>
        <td>1-11/8-5/4-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>52<br />
</td>
        <td>0-13-19-23<br />
</td>
        <td>1-3/2-5/4-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>53<br />
</td>
        <td>0-3-7-26<br />
</td>
        <td>1-9/7-9/5-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>54<br />
</td>
        <td>0-3-13-26<br />
</td>
        <td>1-9/7-3/2-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>55<br />
</td>
        <td>0-7-13-26<br />
</td>
        <td>1-9/5-3/2-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>56<br />
</td>
        <td>0-12-13-26<br />
</td>
        <td>1-11/8-3/2-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>57<br />
</td>
        <td>0-3-14-26<br />
</td>
        <td>1-9/7-18/11-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>58<br />
</td>
        <td>0-7-14-26<br />
</td>
        <td>1-9/5-18/11-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>59<br />
</td>
        <td>0-13-14-26<br />
</td>
        <td>1-3/2-18/11-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>60<br />
</td>
        <td>0-7-19-26<br />
</td>
        <td>1-9/5-5/4-9/8<br />
</td>
        <td>ptolemismic<br />
</td>
    </tr>
    <tr>
        <td>61<br />
</td>
        <td>0-12-19-26<br />
</td>
        <td>1-11/8-5/4-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>62<br />
</td>
        <td>0-13-19-26<br />
</td>
        <td>1-3/2-5/4-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>63<br />
</td>
        <td>0-12-23-26<br />
</td>
        <td>1-11/8-7/4-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>64<br />
</td>
        <td>0-13-23-26<br />
</td>
        <td>1-3/2-7/4-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>65<br />
</td>
        <td>0-19-23-26<br />
</td>
        <td>1-5/4-7/4-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Pentads"></a><!-- ws:end:WikiTextHeadingRule:4 -->Pentads</h1>
 

<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-3-4-7-10<br />
</td>
        <td>1-9/7-7/5-9/5-7/6<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-3-6-7-10<br />
</td>
        <td>1-9/7-5/3-9/5-7/6<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-1-4-7-11<br />
</td>
        <td>1-12/11-7/5-9/5-14/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-4-7-10-11<br />
</td>
        <td>1-7/5-9/5-7/6-14/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-3-6-7-13<br />
</td>
        <td>1-9/7-5/3-9/5-3/2<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-3-6-10-13<br />
</td>
        <td>1-9/7-5/3-7/6-3/2<br />
</td>
        <td>sensamagic<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>0-3-7-10-13<br />
</td>
        <td>1-9/7-9/5-7/6-3/2<br />
</td>
        <td>sensamagic<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>0-6-7-10-13<br />
</td>
        <td>1-5/3-9/5-7/6-3/2<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>0-1-4-7-14<br />
</td>
        <td>1-12/11-7/5-9/5-18/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>0-3-4-7-14<br />
</td>
        <td>1-9/7-7/5-9/5-18/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>0-3-4-10-14<br />
</td>
        <td>1-9/7-7/5-7/6-18/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>0-3-7-10-14<br />
</td>
        <td>1-9/7-9/5-7/6-18/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>0-4-7-10-14<br />
</td>
        <td>1-7/5-9/5-7/6-18/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>0-1-4-11-14<br />
</td>
        <td>1-12/11-7/5-14/11-18/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>0-1-7-11-14<br />
</td>
        <td>1-12/11-20/11-14/11-18/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>0-4-7-11-14<br />
</td>
        <td>1-7/5-9/5-14/11-18/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>0-4-10-11-14<br />
</td>
        <td>1-7/5-7/6-14/11-18/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>0-7-10-11-14<br />
</td>
        <td>1-9/5-7/6-14/11-18/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>0-1-7-13-14<br />
</td>
        <td>1-12/11-9/5-3/2-18/11<br />
</td>
        <td>ptolemismic<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>0-3-7-13-14<br />
</td>
        <td>1-9/7-9/5-3/2-18/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>0-3-10-13-14<br />
</td>
        <td>1-9/7-7/6-3/2-18/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>0-7-10-13-14<br />
</td>
        <td>1-9/5-7/6-3/2-18/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>0-6-7-13-19<br />
</td>
        <td>1-5/3-9/5-3/2-5/4<br />
</td>
        <td>ptolemismic<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>0-6-12-13-19<br />
</td>
        <td>1-5/3-11/8-3/2-5/4<br />
</td>
        <td>ptolemismic<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>0-4-10-11-23<br />
</td>
        <td>1-7/5-7/6-14/11-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>0-12-13-19-23<br />
</td>
        <td>1-11/8-3/2-5/4-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>0-3-7-13-26<br />
</td>
        <td>1-9/7-9/5-3/2-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>0-3-7-14-26<br />
</td>
        <td>1-9/7-9/5-18/11-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>0-3-13-14-26<br />
</td>
        <td>1-9/7-3/2-18/11-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>0-7-13-14-26<br />
</td>
        <td>1-9/5-3/2-18/11-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>0-7-13-19-26<br />
</td>
        <td>1-9/5-3/2-5/4-9/8<br />
</td>
        <td>ptolemismic<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>0-12-13-19-26<br />
</td>
        <td>1-11/8-3/2-5/4-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>0-12-13-23-26<br />
</td>
        <td>1-11/8-3/2-7/4-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>0-12-19-23-26<br />
</td>
        <td>1-11/8-5/4-7/4-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>0-13-19-23-26<br />
</td>
        <td>1-3/2-5/4-7/4-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Hexads"></a><!-- ws:end:WikiTextHeadingRule:6 -->Hexads</h1>
 

<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-3-6-7-10-13<br />
</td>
        <td>1-9/7-5/3-9/5-7/6-3/2<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-3-4-7-10-14<br />
</td>
        <td>1-9/7-7/5-9/5-7/6-18/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-1-4-7-11-14<br />
</td>
        <td>1-12/11-7/5-9/5-14/11-18/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-4-7-10-11-14<br />
</td>
        <td>1-7/5-9/5-7/6-14/11-18/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-3-7-10-13-14<br />
</td>
        <td>1-9/7-9/5-7/6-3/2-18/11<br />
</td>
        <td>octarod<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-3-7-13-14-26<br />
</td>
        <td>1-9/7-9/5-3/2-18/11-9/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>0-12-13-19-23-26<br />
</td>
        <td>1-11/8-3/2-5/4-7/4-9/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
</table>

</body></html>