Chirality
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author Sarzadoce and made on 2015-06-10 20:32:55 UTC.
- The original revision id was 553639502.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
A scale is called **chiral** if reversing the order of the steps results in a different scale. The two scales form a **chiral pair** and are right/left-handed. Handedness is determined by writing both scales in their canonical mode and then comparing the size of both. The smallest example of a chiral pair in an EDO is 321/312, with the former being right-handed and the latter being left-handed. Scales for which this property does not hold are called **achiral**. For example, the diatonic scale is achiral because 2221221 reverses to 1221222, which is identical to the original scale up to cyclical permutation. ==Properties:== # Chiral scales can only exist in EDO's larger than 5-EDO # Chiral scales are at least max-variety 3 (they cannot be MOS or DE) # Chiral scales have at least 3 notes # Chiral scales have a [[http://en.wikipedia.org/wiki/Natural_density|density]] of 1 (see table below) || **EDO** || **Number of** **Chiral Scales** || **Percentage of** **Chiral Scales** || **Corresponding Ratio** || || 1 || 0 || 0.0% || 0/1 || || 2 || 0 || 0.0% || 0/1 || || 3 || 0 || 0.0% || 0/1 || || 4 || 0 || 0.0% || 0/1 || || 5 || 0 || 0.0% || 0/1 || || 6 || 2 || 22.2% || 2/9 || || 7 || 4 || 22.2% || 2/9 || || 8 || 12 || 40.0% || 2/5 || || 9 || 28 || 50.0% || 1/2 || || 10 || 60 || 60.6% || 20/33 || || 11 || 124 || 66.7% || 2/3 || || 12 || 254 || 75.8% || 254/335 || || 13 || 504 || 80.0% || 4/5 || || 14 || 986 || 84.9% || 986/1161 || || 15 || 1936 || 88.7% || 968/1091 || || 16 || 3720 || 91.2% || 31/34 || || 17 || 7200 || 93.4% || 240/257 || || 18 || 13804 || 95.0% || 493/519 || || 19 || 26572 || 96.3% || 26/27 || || 20 || 50892 || 97.2% || 16964/17459 ||
Original HTML content:
<html><head><title>Chirality</title></head><body>A scale is called <strong>chiral</strong> if reversing the order of the steps results in a different scale. The two scales form a <strong>chiral pair</strong> and are right/left-handed. Handedness is determined by writing both scales in their canonical mode and then comparing the size of both. The smallest example of a chiral pair in an EDO is 321/312, with the former being right-handed and the latter being left-handed.<br /> <br /> Scales for which this property does not hold are called <strong>achiral</strong>. For example, the diatonic scale is achiral because 2221221 reverses to 1221222, which is identical to the original scale up to cyclical permutation.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h2> --><h2 id="toc0"><a name="x-Properties:"></a><!-- ws:end:WikiTextHeadingRule:0 -->Properties:</h2> <ol><li>Chiral scales can only exist in EDO's larger than 5-EDO</li><li>Chiral scales are at least max-variety 3 (they cannot be MOS or DE)</li><li>Chiral scales have at least 3 notes</li><li>Chiral scales have a <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Natural_density" rel="nofollow">density</a> of 1 (see table below)</li></ol><br /> <table class="wiki_table"> <tr> <td><strong>EDO</strong><br /> </td> <td><strong>Number of</strong><br /> <strong>Chiral Scales</strong><br /> </td> <td><strong>Percentage of</strong><br /> <strong>Chiral Scales</strong><br /> </td> <td><strong>Corresponding Ratio</strong><br /> </td> </tr> <tr> <td>1<br /> </td> <td>0<br /> </td> <td>0.0%<br /> </td> <td>0/1<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0<br /> </td> <td>0.0%<br /> </td> <td>0/1<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0<br /> </td> <td>0.0%<br /> </td> <td>0/1<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0<br /> </td> <td>0.0%<br /> </td> <td>0/1<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0<br /> </td> <td>0.0%<br /> </td> <td>0/1<br /> </td> </tr> <tr> <td>6<br /> </td> <td>2<br /> </td> <td>22.2%<br /> </td> <td>2/9<br /> </td> </tr> <tr> <td>7<br /> </td> <td>4<br /> </td> <td>22.2%<br /> </td> <td>2/9<br /> </td> </tr> <tr> <td>8<br /> </td> <td>12<br /> </td> <td>40.0%<br /> </td> <td>2/5<br /> </td> </tr> <tr> <td>9<br /> </td> <td>28<br /> </td> <td>50.0%<br /> </td> <td>1/2<br /> </td> </tr> <tr> <td>10<br /> </td> <td>60<br /> </td> <td>60.6%<br /> </td> <td>20/33<br /> </td> </tr> <tr> <td>11<br /> </td> <td>124<br /> </td> <td>66.7%<br /> </td> <td>2/3<br /> </td> </tr> <tr> <td>12<br /> </td> <td>254<br /> </td> <td>75.8%<br /> </td> <td>254/335<br /> </td> </tr> <tr> <td>13<br /> </td> <td>504<br /> </td> <td>80.0%<br /> </td> <td>4/5<br /> </td> </tr> <tr> <td>14<br /> </td> <td>986<br /> </td> <td>84.9%<br /> </td> <td>986/1161<br /> </td> </tr> <tr> <td>15<br /> </td> <td>1936<br /> </td> <td>88.7%<br /> </td> <td>968/1091<br /> </td> </tr> <tr> <td>16<br /> </td> <td>3720<br /> </td> <td>91.2%<br /> </td> <td>31/34<br /> </td> </tr> <tr> <td>17<br /> </td> <td>7200<br /> </td> <td>93.4%<br /> </td> <td>240/257<br /> </td> </tr> <tr> <td>18<br /> </td> <td>13804<br /> </td> <td>95.0%<br /> </td> <td>493/519<br /> </td> </tr> <tr> <td>19<br /> </td> <td>26572<br /> </td> <td>96.3%<br /> </td> <td>26/27<br /> </td> </tr> <tr> <td>20<br /> </td> <td>50892<br /> </td> <td>97.2%<br /> </td> <td>16964/17459<br /> </td> </tr> </table> </body></html>