253389edo
![]() |
This page presents a novelty topic.
It may contain ideas which are less likely to find practical applications in music, or numbers or structures that are arbitrary or exceedingly small, large, or complex. Novelty topics are often developed by a single person or a small group. As such, this page may also contain idiosyncratic terms, notation, or conceptual frameworks. |
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 253388edo | 253389edo | 253390edo → |
253389edo is distinctly consistent to the 59-odd-limit, and indeed is the first edo to achieve it. For that reason, it might attract considerable attention from those who are not put off by extremely small step sizes.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00000 | -0.00030 | -0.00018 | +0.00068 | +0.00039 | +0.00133 | -0.00058 | -0.00050 | +0.00076 | +0.00025 | +0.00072 |
Relative (%) | +0.0 | -6.3 | -3.8 | +14.4 | +8.2 | +28.0 | -12.2 | -10.5 | +16.0 | +5.4 | +15.1 | |
Steps (reduced) |
253389 (0) |
401612 (148223) |
588351 (81573) |
711353 (204575) |
876582 (116415) |
937651 (177484) |
1035718 (22162) |
1076378 (62822) |
1146221 (132665) |
1230959 (217403) |
1255339 (241783) |