50edo: Difference between revisions
Wikispaces>genewardsmith **Imported revision 321254968 - Original comment: ** |
Wikispaces>jdfreivald **Imported revision 342313156 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:jdfreivald|jdfreivald]] and made on <tt>2012-06-03 23:24:52 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>342313156</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//50edo// divides the [[octave]] into 50 equal parts of precisely 24 [[cent]]s each. In the [[5-limit]], it tempers out 81/80, making it a [[meantone]] system, and in that capacity has historically has drawn some notice. In "Harmonics or the Philosophy of Musical Sounds" (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the [[Target tunings|least squares]] tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While [[31edo]] extends meantone with a [[7_4|7/4]] which is nearly pure, 50 has a flat 7/4 but both [[11_8|11/8]] and [[13_8|13/8]] are nearly pure. | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//50edo// divides the [[octave]] into 50 equal parts of precisely 24 [[cent]]s each. In the [[5-limit]], it tempers out 81/80, making it a [[meantone]] system, and in that capacity has historically has drawn some notice. In "Harmonics or the Philosophy of Musical Sounds" (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the [[Target tunings|least squares]] tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While [[31edo]] extends meantone with a [[7_4|7/4]] which is nearly pure, 50 has a flat 7/4 but both [[11_8|11/8]] and [[13_8|13/8]] are nearly pure. | ||
50 tempers out 126/125 in the [[7-limit]], indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the [[11-limit]] and | 50 tempers out 126/125 in the [[7-limit]], indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the [[11-limit]] and 105/104, 144/143 and 196/195 in the [[13-limit]], and can be used for even higher limits. Aside from meantone, it can be used to advantage for the 15&50 temperament. It is also the unique equal temperament tempering out both 81/80 and the [[vishnuzma]], 6115295232/6103515625 = |23 6 -14>, so that in 50et seven chromatic semitones are a perfect fourth. In 12et by comparison this gives a fifth, in 31et a doubly diminished fifth, and in 19et a diminished fourth. | ||
[[http://www.archive.org/details/harmonicsorphilo00smit|Robert Smith's book online]] | [[http://www.archive.org/details/harmonicsorphilo00smit|Robert Smith's book online]] | ||
Line 17: | Line 17: | ||
==Intervals== | ==Intervals== | ||
|| Degrees of 50-EDO || Cents value || | || Degrees of 50-EDO || Cents value || | ||
|| 0 || 0 || | || 0 || 0 || | ||
Line 69: | Line 68: | ||
|| 48 || 1152 || | || 48 || 1152 || | ||
|| 49 || 1176 || | || 49 || 1176 || | ||
==Commas== | |||
50 EDO tempers out the following commas. (Note: This assumes the val < 50 79 116 140 173 185 204 212 226 |, comma values rounded to 2 decimal places.) | |||
||~ ===In bra format=== ||~ ===In cents=== ||~ ===Ratio=== ||~ ===Name 1=== ||~ ===Name2=== || | |||
|| | -4 4 -1 > ||> 21.51 ||= 81/80 || Syntonic comma || Didymus comma || | |||
|| | -8 8 -2 > ||> 43.01 ||= 6561/6400 || Mathieu superdiesis || || | |||
|| | 23 6 -14 > ||> 3.34 ||= 1212717/1210381 || Vishnu comma || || | |||
|| | 1 2 -3 1 > ||> 13.79 ||= 126/125 || Small septimal comma || || | |||
|| | -5 2 2 -1 > ||> 7.71 ||= 225/224 || Septimal kleisma || || | |||
|| | 6 0 -5 2 > ||> 6.08 ||= 3136/3125 || Middle second comma || || | |||
|| | -6 -8 2 5 > ||> 1.12 ||= 420175/419904 || || || | |||
|| |-11 2 7 -3 > ||> 1.63 ||= 703125/702464 || || || | |||
|| | 11 -10 -10 10 > ||> 5.57 ||= 6772805/6751042 || || || | |||
|| |-13 10 0 -1 > ||> 50.72 ||= 59049/57344 || Harrison's comma || || | |||
|| | 2 3 1 -2 -1 > ||> 3.21 ||= 540/539 || Swets' comma || || | |||
|| | -3 4 -2 -2 2 > ||> 0.18 ||= 9801/9800 || Kalisma || Gauss' comma || | |||
|| | 5 -1 3 0 -3 > ||> 3.03 ||= 4000/3993 || Undecimal schisma || || | |||
|| | -7 -1 1 1 1 > ||> 4.50 ||= 385/384 || Undecimal kleisma || || | |||
|| | 2 -1 0 1 -2 1 > ||> 4.76 ||= 364/363 || || || | |||
|| | 2 3 0 -1 1 -2 > ||> 7.30 ||= 1188/1183 || Kestrel Comma || || | |||
|| | 3 0 2 0 1 -3 > ||> 2.36 ||= 2200/2197 || Parizek comma || || | |||
|| | -3 1 1 1 0 -1 > ||> 16.57 ||= 105/104 || Small tridecimal comma || || | |||
|| | 3 -2 0 1 -1 -1 0 0 1 > ||> 1.34 ||= 1288/1287 || Triaphonisma || || | |||
[[http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-50-edo.mp3|Twinkle canon – 50 edo]] by [[http://soonlabel.com/xenharmonic/archives/573|Claudi Meneghin]] | [[http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-50-edo.mp3|Twinkle canon – 50 edo]] by [[http://soonlabel.com/xenharmonic/archives/573|Claudi Meneghin]] | ||
</pre></div> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -4 4 -1 > 21.51 81/80 syntonic comma, Didymus comma | ||
| -8 8 -2 > 43.01 6561/6400 Mathieu superdiesis | |||
| 23 6 -14 > 3.34 1212717/1210381 Vishnu comma | |||
| 1 2 -3 1 > 13.79 126/125 small septimal comma | |||
| -5 2 2 -1 > 7.71 225/224 septimal kleisma | |||
| 6 0 -5 2 > 6.08 3136/3125 middle second comma | |||
| -6 -8 2 5 > 1.12 420175/419904 | |||
|-11 2 7 -3 > 1.63 703125/702464 | |||
| 11 -10 -10 10 > 5.57 6772805/6751042 | |||
|-13 10 0 -1 > 50.72 59049/57344 Harrison's comma | |||
| 2 3 1 -2 -1 > 3.21 540/539 Swets' comma | |||
| -3 4 -2 -2 2 > 0.18 9801/9800 kalisma, Gauss' comma | |||
| 5 -1 3 0 -3 > 3.03 4000/3993 undecimal schisma | |||
| -7 -1 1 1 1 > 4.50 385/384 undecimal kleisma | |||
| 2 -1 0 1 -2 1 > 4.76 364/363 | |||
| 2 3 0 -1 1 -2 > 7.30 1188/1183 Kestrel Comma | |||
| 3 0 2 0 1 -3 > 2.36 2200/2197 Parizek comma | |||
| -3 1 1 1 0 -1 > 16.57 105/104 small tridecimal comma | |||
| 3 -2 0 1 -1 -1 0 0 1 > 1.34 1288/1287 triaphonisma</span></pre></div> | |||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>50edo</title></head><body><em>50edo</em> divides the <a class="wiki_link" href="/octave">octave</a> into 50 equal parts of precisely 24 <a class="wiki_link" href="/cent">cent</a>s each. In the <a class="wiki_link" href="/5-limit">5-limit</a>, it tempers out 81/80, making it a <a class="wiki_link" href="/meantone">meantone</a> system, and in that capacity has historically has drawn some notice. In &quot;Harmonics or the Philosophy of Musical Sounds&quot; (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the <a class="wiki_link" href="/Target%20tunings">least squares</a> tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While <a class="wiki_link" href="/31edo">31edo</a> extends meantone with a <a class="wiki_link" href="/7_4">7/4</a> which is nearly pure, 50 has a flat 7/4 but both <a class="wiki_link" href="/11_8">11/8</a> and <a class="wiki_link" href="/13_8">13/8</a> are nearly pure. <br /> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>50edo</title></head><body><em>50edo</em> divides the <a class="wiki_link" href="/octave">octave</a> into 50 equal parts of precisely 24 <a class="wiki_link" href="/cent">cent</a>s each. In the <a class="wiki_link" href="/5-limit">5-limit</a>, it tempers out 81/80, making it a <a class="wiki_link" href="/meantone">meantone</a> system, and in that capacity has historically has drawn some notice. In &quot;Harmonics or the Philosophy of Musical Sounds&quot; (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the <a class="wiki_link" href="/Target%20tunings">least squares</a> tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While <a class="wiki_link" href="/31edo">31edo</a> extends meantone with a <a class="wiki_link" href="/7_4">7/4</a> which is nearly pure, 50 has a flat 7/4 but both <a class="wiki_link" href="/11_8">11/8</a> and <a class="wiki_link" href="/13_8">13/8</a> are nearly pure.<br /> | ||
<br /> | <br /> | ||
50 tempers out 126/125 in the <a class="wiki_link" href="/7-limit">7-limit</a>, indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the <a class="wiki_link" href="/11-limit">11-limit</a> and | 50 tempers out 126/125 in the <a class="wiki_link" href="/7-limit">7-limit</a>, indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the <a class="wiki_link" href="/11-limit">11-limit</a> and 105/104, 144/143 and 196/195 in the <a class="wiki_link" href="/13-limit">13-limit</a>, and can be used for even higher limits. Aside from meantone, it can be used to advantage for the 15&amp;50 temperament. It is also the unique equal temperament tempering out both 81/80 and the <a class="wiki_link" href="/vishnuzma">vishnuzma</a>, 6115295232/6103515625 = |23 6 -14&gt;, so that in 50et seven chromatic semitones are a perfect fourth. In 12et by comparison this gives a fifth, in 31et a doubly diminished fifth, and in 19et a diminished fourth.<br /> | ||
<br /> | <br /> | ||
<a class="wiki_link_ext" href="http://www.archive.org/details/harmonicsorphilo00smit" rel="nofollow">Robert Smith's book online</a><br /> | <a class="wiki_link_ext" href="http://www.archive.org/details/harmonicsorphilo00smit" rel="nofollow">Robert Smith's book online</a><br /> | ||
Line 84: | Line 124: | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x-Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h2> | <!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x-Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h2> | ||
<table class="wiki_table"> | <table class="wiki_table"> | ||
Line 397: | Line 436: | ||
<br /> | <br /> | ||
<a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-50-edo.mp3" rel="nofollow">Twinkle canon – 50 edo</a> by <a class="wiki_link_ext" href="http://soonlabel.com/xenharmonic/archives/573" rel="nofollow">Claudi Meneghin</a></body></html></pre></div> | <!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="x-Commas"></a><!-- ws:end:WikiTextHeadingRule:4 -->Commas</h2> | ||
50 EDO tempers out the following commas. (Note: This assumes the val &lt; 50 79 116 140 173 185 204 212 226 |, comma values rounded to 2 decimal places.)<br /> | |||
<table class="wiki_table"> | |||
<tr> | |||
<th><!-- ws:start:WikiTextHeadingRule:6:&lt;h3&gt; --><h3 id="toc3"><a name="x-Commas-In bra format"></a><!-- ws:end:WikiTextHeadingRule:6 -->In bra format</h3> | |||
</th> | |||
<th><!-- ws:start:WikiTextHeadingRule:8:&lt;h3&gt; --><h3 id="toc4"><a name="x-Commas-In cents"></a><!-- ws:end:WikiTextHeadingRule:8 -->In cents</h3> | |||
</th> | |||
<th><!-- ws:start:WikiTextHeadingRule:10:&lt;h3&gt; --><h3 id="toc5"><a name="x-Commas-Ratio"></a><!-- ws:end:WikiTextHeadingRule:10 -->Ratio</h3> | |||
</th> | |||
<th><!-- ws:start:WikiTextHeadingRule:12:&lt;h3&gt; --><h3 id="toc6"><a name="x-Commas-Name 1"></a><!-- ws:end:WikiTextHeadingRule:12 -->Name 1</h3> | |||
</th> | |||
<th><!-- ws:start:WikiTextHeadingRule:14:&lt;h3&gt; --><h3 id="toc7"><a name="x-Commas-Name2"></a><!-- ws:end:WikiTextHeadingRule:14 -->Name2</h3> | |||
</th> | |||
</tr> | |||
<tr> | |||
<td>| -4 4 -1 &gt;<br /> | |||
</td> | |||
<td style="text-align: right;">21.51<br /> | |||
</td> | |||
<td style="text-align: center;">81/80<br /> | |||
</td> | |||
<td>Syntonic comma<br /> | |||
</td> | |||
<td>Didymus comma<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>| -8 8 -2 &gt;<br /> | |||
</td> | |||
<td style="text-align: right;">43.01<br /> | |||
</td> | |||
<td style="text-align: center;">6561/6400<br /> | |||
</td> | |||
<td>Mathieu superdiesis<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>| 23 6 -14 &gt;<br /> | |||
</td> | |||
<td style="text-align: right;">3.34<br /> | |||
</td> | |||
<td style="text-align: center;">1212717/1210381<br /> | |||
</td> | |||
<td>Vishnu comma<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>| 1 2 -3 1 &gt;<br /> | |||
</td> | |||
<td style="text-align: right;">13.79<br /> | |||
</td> | |||
<td style="text-align: center;">126/125<br /> | |||
</td> | |||
<td>Small septimal comma<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>| -5 2 2 -1 &gt;<br /> | |||
</td> | |||
<td style="text-align: right;">7.71<br /> | |||
</td> | |||
<td style="text-align: center;">225/224<br /> | |||
</td> | |||
<td>Septimal kleisma<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>| 6 0 -5 2 &gt;<br /> | |||
</td> | |||
<td style="text-align: right;">6.08<br /> | |||
</td> | |||
<td style="text-align: center;">3136/3125<br /> | |||
</td> | |||
<td>Middle second comma<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>| -6 -8 2 5 &gt;<br /> | |||
</td> | |||
<td style="text-align: right;">1.12<br /> | |||
</td> | |||
<td style="text-align: center;">420175/419904<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>|-11 2 7 -3 &gt;<br /> | |||
</td> | |||
<td style="text-align: right;">1.63<br /> | |||
</td> | |||
<td style="text-align: center;">703125/702464<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>| 11 -10 -10 10 &gt;<br /> | |||
</td> | |||
<td style="text-align: right;">5.57<br /> | |||
</td> | |||
<td style="text-align: center;">6772805/6751042<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>|-13 10 0 -1 &gt;<br /> | |||
</td> | |||
<td style="text-align: right;">50.72<br /> | |||
</td> | |||
<td style="text-align: center;">59049/57344<br /> | |||
</td> | |||
<td>Harrison's comma<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>| 2 3 1 -2 -1 &gt;<br /> | |||
</td> | |||
<td style="text-align: right;">3.21<br /> | |||
</td> | |||
<td style="text-align: center;">540/539<br /> | |||
</td> | |||
<td>Swets' comma<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>| -3 4 -2 -2 2 &gt;<br /> | |||
</td> | |||
<td style="text-align: right;">0.18<br /> | |||
</td> | |||
<td style="text-align: center;">9801/9800<br /> | |||
</td> | |||
<td>Kalisma<br /> | |||
</td> | |||
<td>Gauss' comma<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>| 5 -1 3 0 -3 &gt;<br /> | |||
</td> | |||
<td style="text-align: right;">3.03<br /> | |||
</td> | |||
<td style="text-align: center;">4000/3993<br /> | |||
</td> | |||
<td>Undecimal schisma<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>| -7 -1 1 1 1 &gt;<br /> | |||
</td> | |||
<td style="text-align: right;">4.50<br /> | |||
</td> | |||
<td style="text-align: center;">385/384<br /> | |||
</td> | |||
<td>Undecimal kleisma<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>| 2 -1 0 1 -2 1 &gt;<br /> | |||
</td> | |||
<td style="text-align: right;">4.76<br /> | |||
</td> | |||
<td style="text-align: center;">364/363<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>| 2 3 0 -1 1 -2 &gt;<br /> | |||
</td> | |||
<td style="text-align: right;">7.30<br /> | |||
</td> | |||
<td style="text-align: center;">1188/1183<br /> | |||
</td> | |||
<td>Kestrel Comma<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>| 3 0 2 0 1 -3 &gt;<br /> | |||
</td> | |||
<td style="text-align: right;">2.36<br /> | |||
</td> | |||
<td style="text-align: center;">2200/2197<br /> | |||
</td> | |||
<td>Parizek comma<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>| -3 1 1 1 0 -1 &gt;<br /> | |||
</td> | |||
<td style="text-align: right;">16.57<br /> | |||
</td> | |||
<td style="text-align: center;">105/104<br /> | |||
</td> | |||
<td>Small tridecimal comma<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>| 3 -2 0 1 -1 -1 0 0 1 &gt;<br /> | |||
</td> | |||
<td style="text-align: right;">1.34<br /> | |||
</td> | |||
<td style="text-align: center;">1288/1287<br /> | |||
</td> | |||
<td>Triaphonisma<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
</table> | |||
<br /> | |||
<a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-50-edo.mp3" rel="nofollow">Twinkle canon – 50 edo</a> by <a class="wiki_link_ext" href="http://soonlabel.com/xenharmonic/archives/573" rel="nofollow">Claudi Meneghin</a><br /> | |||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -4 4 -1 &gt; 21.51 81/80 syntonic comma, Didymus comma<br /> | |||
| -8 8 -2 &gt; 43.01 6561/6400 Mathieu superdiesis<br /> | |||
| 23 6 -14 &gt; 3.34 1212717/1210381 Vishnu comma<br /> | |||
| 1 2 -3 1 &gt; 13.79 126/125 small septimal comma<br /> | |||
| -5 2 2 -1 &gt; 7.71 225/224 septimal kleisma<br /> | |||
| 6 0 -5 2 &gt; 6.08 3136/3125 middle second comma<br /> | |||
| -6 -8 2 5 &gt; 1.12 420175/419904<br /> | |||
|-11 2 7 -3 &gt; 1.63 703125/702464<br /> | |||
| 11 -10 -10 10 &gt; 5.57 6772805/6751042<br /> | |||
|-13 10 0 -1 &gt; 50.72 59049/57344 Harrison's comma<br /> | |||
| 2 3 1 -2 -1 &gt; 3.21 540/539 Swets' comma<br /> | |||
| -3 4 -2 -2 2 &gt; 0.18 9801/9800 kalisma, Gauss' comma<br /> | |||
| 5 -1 3 0 -3 &gt; 3.03 4000/3993 undecimal schisma<br /> | |||
| -7 -1 1 1 1 &gt; 4.50 385/384 undecimal kleisma<br /> | |||
| 2 -1 0 1 -2 1 &gt; 4.76 364/363<br /> | |||
| 2 3 0 -1 1 -2 &gt; 7.30 1188/1183 Kestrel Comma<br /> | |||
| 3 0 2 0 1 -3 &gt; 2.36 2200/2197 Parizek comma<br /> | |||
| -3 1 1 1 0 -1 &gt; 16.57 105/104 small tridecimal comma<br /> | |||
| 3 -2 0 1 -1 -1 0 0 1 &gt; 1.34 1288/1287 triaphonisma</span></body></html></pre></div> |