50edo: Difference between revisions

Wikispaces>xenwolf
**Imported revision 575219197 - Original comment: **
Wikispaces>JosephRuhf
**Imported revision 601556602 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2016-02-18 16:45:20 UTC</tt>.<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016-12-06 15:51:23 UTC</tt>.<br>
: The original revision id was <tt>575219197</tt>.<br>
: The original revision id was <tt>601556602</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 9: Line 9:
//50edo// divides the [[octave]] into 50 equal parts of precisely 24 [[cent]]s each. In the [[5-limit]], it tempers out 81/80, making it a [[meantone]] system, and in that capacity has historically has drawn some notice. In [[http://lit.gfax.ch/Harmonics%202nd%20Edition%20%28Robert%20Smith%29.pdf|"Harmonics or the Philosophy of Musical Sounds"]] (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later, W.S.B. Woolhouse noted it was fairly close to the [[Target tunings|least squares]] tuning for 5-limit meantone. 50edo, however, is especially interesting from a higher limit point of view. While [[31edo]] extends meantone with a [[7_4|7/4]] which is nearly pure, 50 has a flat 7/4 but both [[11_8|11/8]] and [[13_8|13/8]] are nearly pure.
//50edo// divides the [[octave]] into 50 equal parts of precisely 24 [[cent]]s each. In the [[5-limit]], it tempers out 81/80, making it a [[meantone]] system, and in that capacity has historically has drawn some notice. In [[http://lit.gfax.ch/Harmonics%202nd%20Edition%20%28Robert%20Smith%29.pdf|"Harmonics or the Philosophy of Musical Sounds"]] (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later, W.S.B. Woolhouse noted it was fairly close to the [[Target tunings|least squares]] tuning for 5-limit meantone. 50edo, however, is especially interesting from a higher limit point of view. While [[31edo]] extends meantone with a [[7_4|7/4]] which is nearly pure, 50 has a flat 7/4 but both [[11_8|11/8]] and [[13_8|13/8]] are nearly pure.


50 tempers out 126/125, 225/224 and 3136/3125 in the [[7-limit]], indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the [[11-limit]] and 105/104, 144/143 and 196/195 in the [[13-limit]], and can be used for even higher limits. Aside from meantone and its extension meanpop, it can be used to advantage for the 15&amp;50 temperament ([[http://x31eq.com/cgi-bin/rt.cgi?ets=15%2650&amp;limit=11|Coblack]]), and provides the optimal patent val for 11 and 13 limit [[Meantone family#Septimal meantone-Bimeantone|bimeantone]]. It is also the unique equal temperament tempering out both 81/80 and the [[vishnuzma]], 6115295232/6103515625 = |23 6 -14&gt;, so that in 50et seven chromatic semitones are a perfect fourth. In 12et by comparison this gives a fifth, in 31et a doubly diminished fifth, and in 19et a diminished fourth.
50 tempers out 126/125, 225/224 and 3136/3125 in the [[7-limit]], indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the [[11-limit]] and 105/104, 144/143 and 196/195 in the [[13-limit]], and can be used for even higher limits. Aside from meantone and its extension meanpop, it can be used to advantage for the 15&amp;50 temperament ([[http://x31eq.com/cgi-bin/rt.cgi?ets=15%2650&amp;limit=11|Coblack]]), and provides the optimal patent val for 11 and 13 limit [[Meantone family#Septimal%20meantone-Bimeantone|bimeantone]]. It is also the unique equal temperament tempering out both 81/80 and the [[vishnuzma]], [[tel:6115295232|6115295232]]/6103515625 = |23 6 -14&gt;, so that in 50et seven chromatic semitones are a perfect fourth. In 12et by comparison this gives a fifth, in 31et a doubly diminished fifth, and in 19et a diminished fourth.


=Relations=  
=Relations=  
Line 71: Line 71:
The following table shows how [[Just-24|some prominent just intervals]] are represented in 50edo (ordered by absolute error).
The following table shows how [[Just-24|some prominent just intervals]] are represented in 50edo (ordered by absolute error).
|| **Interval, complement** || **Error (abs., in [[cent|cents]])** ||
|| **Interval, complement** || **Error (abs., in [[cent|cents]])** ||
||= [[16_13|16/13]], [[13_8|13/8]]   ||= 0.528 ||
||= [[16_13|16/13]], [[13_8|13/8]] ||= 0.528 ||
||= [[15_14|15/14]], [[28_15|28/15]] ||= 0.557 ||
||= [[15_14|15/14]], [[28_15|28/15]] ||= 0.557 ||
||= [[11_8|11/8]],   [[16_11|16/11]] ||= 0.682 ||
||= [[11_8|11/8]], [[16_11|16/11]] ||= 0.682 ||
||= [[13_11|13/11]], [[22_13|22/13]] ||= 1.210 ||
||= [[13_11|13/11]], [[22_13|22/13]] ||= 1.210 ||
||= [[13_10|13/10]], [[20_13|20/13]] ||= 1.786 ||
||= [[13_10|13/10]], [[20_13|20/13]] ||= 1.786 ||
||= [[5_4|5/4]],     [[8_5|8/5]]     ||= 2.314 ||
||= [[5_4|5/4]], [[8_5|8/5]] ||= 2.314 ||
||= [[7_6|7/6]],     [[12_7|12/7]]   ||= 2.871 ||
||= [[7_6|7/6]], [[12_7|12/7]] ||= 2.871 ||
||= [[11_10|11/10]], [[20_11|20/11]] ||= 2.996 ||
||= [[11_10|11/10]], [[20_11|20/11]] ||= 2.996 ||
||= [[9_7|9/7]],     [[14_9|14/9]]   ||= 3.084 ||
||= [[9_7|9/7]], [[14_9|14/9]] ||= 3.084 ||
||= [[6_5|6/5]],     [[5_3|5/3]]     ||= 3.641 ||
||= [[6_5|6/5]], [[5_3|5/3]] ||= 3.641 ||
||= [[13_12|13/12]], [[24_13|24/13]] ||= 5.427 ||
||= [[13_12|13/12]], [[24_13|24/13]] ||= 5.427 ||
||= [[4_3|4/3]],     [[3_2|3/2]]     ||= 5.955 ||
||= [[4_3|4/3]], [[3_2|3/2]] ||= 5.955 ||
||= [[7_5|7/5]],     [[10_7|10/7]]   ||= 6.512 ||
||= [[7_5|7/5]], [[10_7|10/7]] ||= 6.512 ||
||= [[12_11|12/11]], [[11_6|11/6]]   ||= 6.637 ||
||= [[12_11|12/11]], [[11_6|11/6]] ||= 6.637 ||
||= [[15_13|15/13]], [[26_15|26/15]] ||= 7.741 ||
||= [[15_13|15/13]], [[26_15|26/15]] ||= 7.741 ||
||= [[16_15|16/15]], [[15_8|15/8]]   ||= 8.269 ||
||= [[16_15|16/15]], [[15_8|15/8]] ||= 8.269 ||
||= [[14_13|14/13]], [[13_7|13/7]]   ||= 8.298 ||
||= [[14_13|14/13]], [[13_7|13/7]] ||= 8.298 ||
||= [[8_7|8/7]],     [[7_4|7/4]]     ||= 8.826 ||
||= [[8_7|8/7]], [[7_4|7/4]] ||= 8.826 ||
||= [[15_11|15/11]], [[22_15|22/15]] ||= 8.951 ||
||= [[15_11|15/11]], [[22_15|22/15]] ||= 8.951 ||
||= [[14_11|14/11]], [[11_7|11/7]]   ||= 9.508 ||
||= [[14_11|14/11]], [[11_7|11/7]] ||= 9.508 ||
||= [[10_9|10/9]],   [[9_5|9/5]]     ||= 9.596 ||
||= [[10_9|10/9]], [[9_5|9/5]] ||= 9.596 ||
||= [[18_13|18/13]], [[13_9|13/9]]   ||= 11.382 ||
||= [[18_13|18/13]], [[13_9|13/9]] ||= 11.382 ||
||= [[11_9|11/9]],   [[18_11|18/11]] ||= 11.408 ||
||= [[11_9|11/9]], [[18_11|18/11]] ||= 11.408 ||
||= [[9_8|9/8]],     [[16_9|16/9]]   ||= 11.910 ||
||= [[9_8|9/8]], [[16_9|16/9]] ||= 11.910 ||


=Commas=  
=Commas=  
50 EDO tempers out the following commas. (Note: This assumes the val &lt; 50 79 116 140 173 185 204 212 226 |, comma values in cents rounded to 2 decimal places.) This list is not all-inclusive, and is based on the interval table from Scala version 2.2.
50 EDO tempers out the following commas. (Note: This assumes the val &lt; 50 79 116 140 173/1 185 204 212 226/1 |, comma values in cents rounded to 2 decimal places.) This list is not all-inclusive, and is based on the interval table from Scala version 2.2.
||~ Monzo ||~ Cents ||~ Ratio ||~ Name 1 ||~ Name 2 ||
||~ Monzo ||~ Cents ||~ Ratio ||~ Name 1 ||~ Name 2 ||
|| | -4 4 -1 &gt; ||&gt; 21.51 ||= 81/80 || Syntonic comma || Didymus comma ||
|| | -4 4 -1 &gt; ||&gt; 21.51 ||= 81/80 || Syntonic comma || Didymus comma ||
|| | -27 -2 13 &gt; ||&gt; 18.17 ||= 1220703125/1207959552 || Ditonma ||  ||
|| | -27 -2 13 &gt; ||&gt; 18.17 ||=   || Ditonma ||  ||
|| | 23 6 -14 &gt; ||&gt; 3.34 ||= 6115295232/6103515625 || Vishnu comma ||  ||
|| | 23 6 -14 &gt; ||&gt; 3.34 ||=   || Vishnu comma ||  ||
|| | 1 2 -3 1 &gt; ||&gt; 13.79 ||= 126/125 || Starling comma || Small septimal comma ||
|| | 1 2 -3 1 &gt; ||&gt; 13.79 ||= 126/125 || Starling comma || Small septimal comma ||
|| | -5 2 2 -1 &gt; ||&gt; 7.71 ||= 225/224 || Septimal kleisma || Marvel comma ||
|| | -5 2 2 -1 &gt; ||&gt; 7.71 ||= 225/224 || Septimal kleisma || Marvel comma ||
|| | 6 0 -5 2 &gt; ||&gt; 6.08 ||= 3136/3125 || Hemimean || Middle second comma ||
|| | 6 0 -5 2 &gt; ||&gt; 6.08 ||= 3136/3125 || Hemimean || Middle second comma ||
|| | -6 -8 2 5 &gt; ||&gt; 1.12 ||= 420175/419904 || Wizma ||  ||
|| | -6 -8 2 5 &gt; ||&gt; 1.12 ||=   || Wizma ||  ||
|| |-11 2 7 -3 &gt; ||&gt; 1.63 ||= 703125/702464 || Meter ||  ||
|| |-11 2 7 -3 &gt; ||&gt; 1.63 ||=   || Meter ||  ||
|| | 11 -10 -10 10 &gt; ||&gt; 5.57 ||= 578509309952/576650390625 || Linus ||  ||
|| | 11 -10 -10 10/1 &gt; ||&gt; 5.57 ||=   || Linus ||  ||
|| |-13 10 0 -1 &gt; ||&gt; 50.72 ||= 59049/57344 || Harrison's comma ||  ||
|| |-13 10 0 -1 &gt; ||&gt; 50.72 ||= 59049/57344 || Harrison's comma ||  ||
|| | 2 3 1 -2 -1 &gt; ||&gt; 3.21 ||= 540/539 || Swets' comma || Swetisma ||
|| | 2 3 1 -2 -1 &gt; ||&gt; 3.21 ||= 540/539 || Swets' comma || Swetisma ||
Line 143: Line 143:
&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;em&gt;50edo&lt;/em&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 50 equal parts of precisely 24 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. In the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt;, it tempers out 81/80, making it a &lt;a class="wiki_link" href="/meantone"&gt;meantone&lt;/a&gt; system, and in that capacity has historically has drawn some notice. In &lt;a class="wiki_link_ext" href="http://lit.gfax.ch/Harmonics%202nd%20Edition%20%28Robert%20Smith%29.pdf" rel="nofollow"&gt;&amp;quot;Harmonics or the Philosophy of Musical Sounds&amp;quot;&lt;/a&gt; (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later, W.S.B. Woolhouse noted it was fairly close to the &lt;a class="wiki_link" href="/Target%20tunings"&gt;least squares&lt;/a&gt; tuning for 5-limit meantone. 50edo, however, is especially interesting from a higher limit point of view. While &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; extends meantone with a &lt;a class="wiki_link" href="/7_4"&gt;7/4&lt;/a&gt; which is nearly pure, 50 has a flat 7/4 but both &lt;a class="wiki_link" href="/11_8"&gt;11/8&lt;/a&gt; and &lt;a class="wiki_link" href="/13_8"&gt;13/8&lt;/a&gt; are nearly pure.&lt;br /&gt;
&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;em&gt;50edo&lt;/em&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 50 equal parts of precisely 24 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. In the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt;, it tempers out 81/80, making it a &lt;a class="wiki_link" href="/meantone"&gt;meantone&lt;/a&gt; system, and in that capacity has historically has drawn some notice. In &lt;a class="wiki_link_ext" href="http://lit.gfax.ch/Harmonics%202nd%20Edition%20%28Robert%20Smith%29.pdf" rel="nofollow"&gt;&amp;quot;Harmonics or the Philosophy of Musical Sounds&amp;quot;&lt;/a&gt; (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later, W.S.B. Woolhouse noted it was fairly close to the &lt;a class="wiki_link" href="/Target%20tunings"&gt;least squares&lt;/a&gt; tuning for 5-limit meantone. 50edo, however, is especially interesting from a higher limit point of view. While &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; extends meantone with a &lt;a class="wiki_link" href="/7_4"&gt;7/4&lt;/a&gt; which is nearly pure, 50 has a flat 7/4 but both &lt;a class="wiki_link" href="/11_8"&gt;11/8&lt;/a&gt; and &lt;a class="wiki_link" href="/13_8"&gt;13/8&lt;/a&gt; are nearly pure.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
50 tempers out 126/125, 225/224 and 3136/3125 in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt; and 105/104, 144/143 and 196/195 in the &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt;, and can be used for even higher limits. Aside from meantone and its extension meanpop, it can be used to advantage for the 15&amp;amp;50 temperament (&lt;a class="wiki_link_ext" href="http://x31eq.com/cgi-bin/rt.cgi?ets=15%2650&amp;amp;limit=11" rel="nofollow"&gt;Coblack&lt;/a&gt;), and provides the optimal patent val for 11 and 13 limit &lt;a class="wiki_link" href="/Meantone%20family#Septimal meantone-Bimeantone"&gt;bimeantone&lt;/a&gt;. It is also the unique equal temperament tempering out both 81/80 and the &lt;a class="wiki_link" href="/vishnuzma"&gt;vishnuzma&lt;/a&gt;, 6115295232/6103515625 = |23 6 -14&amp;gt;, so that in 50et seven chromatic semitones are a perfect fourth. In 12et by comparison this gives a fifth, in 31et a doubly diminished fifth, and in 19et a diminished fourth.&lt;br /&gt;
50 tempers out 126/125, 225/224 and 3136/3125 in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt; and 105/104, 144/143 and 196/195 in the &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt;, and can be used for even higher limits. Aside from meantone and its extension meanpop, it can be used to advantage for the 15&amp;amp;50 temperament (&lt;a class="wiki_link_ext" href="http://x31eq.com/cgi-bin/rt.cgi?ets=15%2650&amp;amp;limit=11" rel="nofollow"&gt;Coblack&lt;/a&gt;), and provides the optimal patent val for 11 and 13 limit &lt;a class="wiki_link" href="/Meantone%20family#Septimal%20meantone-Bimeantone"&gt;bimeantone&lt;/a&gt;. It is also the unique equal temperament tempering out both 81/80 and the &lt;a class="wiki_link" href="/vishnuzma"&gt;vishnuzma&lt;/a&gt;, &lt;a class="wiki_link" href="http://tel.wikispaces.com/6115295232"&gt;6115295232&lt;/a&gt;/6103515625 = |23 6 -14&amp;gt;, so that in 50et seven chromatic semitones are a perfect fourth. In 12et by comparison this gives a fifth, in 31et a doubly diminished fifth, and in 19et a diminished fourth.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Relations"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Relations&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Relations"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Relations&lt;/h1&gt;
Line 690: Line 690:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/11_8"&gt;11/8&lt;/a&gt;,   &lt;a class="wiki_link" href="/16_11"&gt;16/11&lt;/a&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/11_8"&gt;11/8&lt;/a&gt;, &lt;a class="wiki_link" href="/16_11"&gt;16/11&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;0.682&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;0.682&lt;br /&gt;
Line 708: Line 708:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/5_4"&gt;5/4&lt;/a&gt;,     &lt;a class="wiki_link" href="/8_5"&gt;8/5&lt;/a&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/5_4"&gt;5/4&lt;/a&gt;, &lt;a class="wiki_link" href="/8_5"&gt;8/5&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;2.314&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;2.314&lt;br /&gt;
Line 714: Line 714:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/7_6"&gt;7/6&lt;/a&gt;,     &lt;a class="wiki_link" href="/12_7"&gt;12/7&lt;/a&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/7_6"&gt;7/6&lt;/a&gt;, &lt;a class="wiki_link" href="/12_7"&gt;12/7&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;2.871&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;2.871&lt;br /&gt;
Line 726: Line 726:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/9_7"&gt;9/7&lt;/a&gt;,     &lt;a class="wiki_link" href="/14_9"&gt;14/9&lt;/a&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/9_7"&gt;9/7&lt;/a&gt;, &lt;a class="wiki_link" href="/14_9"&gt;14/9&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;3.084&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;3.084&lt;br /&gt;
Line 732: Line 732:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/6_5"&gt;6/5&lt;/a&gt;,     &lt;a class="wiki_link" href="/5_3"&gt;5/3&lt;/a&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/6_5"&gt;6/5&lt;/a&gt;, &lt;a class="wiki_link" href="/5_3"&gt;5/3&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;3.641&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;3.641&lt;br /&gt;
Line 744: Line 744:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/4_3"&gt;4/3&lt;/a&gt;,     &lt;a class="wiki_link" href="/3_2"&gt;3/2&lt;/a&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/4_3"&gt;4/3&lt;/a&gt;, &lt;a class="wiki_link" href="/3_2"&gt;3/2&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;5.955&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;5.955&lt;br /&gt;
Line 750: Line 750:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/7_5"&gt;7/5&lt;/a&gt;,     &lt;a class="wiki_link" href="/10_7"&gt;10/7&lt;/a&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/7_5"&gt;7/5&lt;/a&gt;, &lt;a class="wiki_link" href="/10_7"&gt;10/7&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;6.512&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;6.512&lt;br /&gt;
Line 780: Line 780:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/8_7"&gt;8/7&lt;/a&gt;,     &lt;a class="wiki_link" href="/7_4"&gt;7/4&lt;/a&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/8_7"&gt;8/7&lt;/a&gt;, &lt;a class="wiki_link" href="/7_4"&gt;7/4&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;8.826&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;8.826&lt;br /&gt;
Line 798: Line 798:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/10_9"&gt;10/9&lt;/a&gt;,   &lt;a class="wiki_link" href="/9_5"&gt;9/5&lt;/a&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/10_9"&gt;10/9&lt;/a&gt;, &lt;a class="wiki_link" href="/9_5"&gt;9/5&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;9.596&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;9.596&lt;br /&gt;
Line 810: Line 810:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/11_9"&gt;11/9&lt;/a&gt;,   &lt;a class="wiki_link" href="/18_11"&gt;18/11&lt;/a&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/11_9"&gt;11/9&lt;/a&gt;, &lt;a class="wiki_link" href="/18_11"&gt;18/11&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;11.408&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;11.408&lt;br /&gt;
Line 816: Line 816:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/9_8"&gt;9/8&lt;/a&gt;,     &lt;a class="wiki_link" href="/16_9"&gt;16/9&lt;/a&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/9_8"&gt;9/8&lt;/a&gt;, &lt;a class="wiki_link" href="/16_9"&gt;16/9&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;11.910&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;11.910&lt;br /&gt;
Line 825: Line 825:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Commas&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Commas&lt;/h1&gt;
  50 EDO tempers out the following commas. (Note: This assumes the val &amp;lt; 50 79 116 140 173 185 204 212 226 |, comma values in cents rounded to 2 decimal places.) This list is not all-inclusive, and is based on the interval table from Scala version 2.2.&lt;br /&gt;
  50 EDO tempers out the following commas. (Note: This assumes the val &amp;lt; 50 79 116 140 173/1 185 204 212 226/1 |, comma values in cents rounded to 2 decimal places.) This list is not all-inclusive, and is based on the interval table from Scala version 2.2.&lt;br /&gt;




Line 858: Line 858:
         &lt;td style="text-align: right;"&gt;18.17&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;18.17&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;1220703125/1207959552&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Ditonma&lt;br /&gt;
         &lt;td&gt;Ditonma&lt;br /&gt;
Line 870: Line 870:
         &lt;td style="text-align: right;"&gt;3.34&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;3.34&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;6115295232/6103515625&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Vishnu comma&lt;br /&gt;
         &lt;td&gt;Vishnu comma&lt;br /&gt;
Line 918: Line 918:
         &lt;td style="text-align: right;"&gt;1.12&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;1.12&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;420175/419904&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Wizma&lt;br /&gt;
         &lt;td&gt;Wizma&lt;br /&gt;
Line 930: Line 930:
         &lt;td style="text-align: right;"&gt;1.63&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;1.63&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;703125/702464&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Meter&lt;br /&gt;
         &lt;td&gt;Meter&lt;br /&gt;
Line 938: Line 938:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;| 11 -10 -10 10 &amp;gt;&lt;br /&gt;
         &lt;td&gt;| 11 -10 -10 10/1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: right;"&gt;5.57&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;5.57&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;578509309952/576650390625&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Linus&lt;br /&gt;
         &lt;td&gt;Linus&lt;br /&gt;