User:Frostburn/Geometric algebra for regular temperaments: Difference between revisions
→Geometric algebraic version: Add notes about not strictly needing the wedgie. |
|||
Line 72: | Line 72: | ||
=== Geometric algebraic version === | === Geometric algebraic version === | ||
Given a rank-2 temperament <math>\mathbf{T}</math> find <math>\overrightarrow{g}</math> (with integer coefficients) such that | |||
:<math>\overrightarrow{g} \cdot (e_1 \cdot \mathbf{ | :<math>\overrightarrow{g} \cdot (e_1 \cdot \mathbf{T}) = d</math> | ||
where <math>d = gcd(...(e_1 \cdot \mathbf{ | where <math>d = gcd(...(e_1 \cdot \mathbf{T}))</math>. The period can be expressed (non-integrally) as <math>\overrightarrow{p} = e_1 / |d|</math> and a valid generator is <math>\overrightarrow{g}</math>. Other valid generators are of the form | ||
:<math>n \overrightarrow{p} ± \overrightarrow{g}, n \in \mathbb{Z}</math> | :<math>n \overrightarrow{p} ± \overrightarrow{g}, n \in \mathbb{Z}</math> | ||
If the temperament is not expressed in lowest terms the number of divisions will miscompensate and you will end up with the wrong equave. |