3L 6s: Difference between revisions

Wikispaces>JosephRuhf
**Imported revision 565341749 - Original comment: **
Wikispaces>JosephRuhf
**Imported revision 599895808 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-11-05 13:26:41 UTC</tt>.<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016-11-20 13:28:40 UTC</tt>.<br>
: The original revision id was <tt>565341749</tt>.<br>
: The original revision id was <tt>599895808</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 26: Line 26:
||  ||  || 2\21 ||  ||  || 114.286 ||=  ||
||  ||  || 2\21 ||  ||  || 114.286 ||=  ||
||  ||  ||  || 3\30 ||  || 120 ||=  ||
||  ||  ||  || 3\30 ||  || 120 ||=  ||
|| 1\9 ||  ||  ||  ||  || 133.333 ||=  ||</pre></div>
|| 1\9 ||  ||  ||  ||  || 133.333 ||=  ||
 
From a standard diatonic point of view, an optimized (MOD)MOS pattern of 3L+6s works out to become one of the modes of the Mohajira diatonic or Rast scale extended to a minor tenth, the MOS itself being the tritetrachordal Mixolydian b10 scale, the interesting property of which being that it treats a seventh as a perfect interval rather than a fifth, however far off it may be from a perfect 7/4. As a temperament, it has period ~4/3 and generator up to 1/3 of that, making a subrange of the range between its median and maximum generators represent an ~12/11 (given harmonic entropy as coarse as that of [[Mavila]], 120 cents can be an acceptable 12\11).
 
||||||||||~ Minor Tenth ||~ Fourth ||~ Neutral Third ||||||||~ &lt;span style="display: block; text-align: center;"&gt;Generator&lt;/span&gt; ||
||||||||||~  ||~  ||~  ||~ &lt;span style="display: block; text-align: center;"&gt;Mean&lt;/span&gt; ||~ &lt;span style="display: block; text-align: center;"&gt;Median&lt;/span&gt; ||~ &lt;span style="display: block; text-align: center;"&gt;Golden&lt;/span&gt; ||~ Maximum ||
|| 9\7 ||  ||  ||  ||  || 514.286 || 342.857 || 85.714 || 128.571 || 142.145 || 171.429 ||
||  ||  ||  ||  || 48\38 || 505.263 || 347.368 || 84.2105 || 126.316 || 139.651 || 168.421 ||
||  ||  ||  || 39\31 ||  || 503.226 || 348.387 || 83.871 || 125.8065 || 139.088 || 167.742 ||
||  ||  ||  ||  || 69\55 || 506.667 || 349.091 || 83.636 || 125.4545 || 138.699 || 167.273 ||
||  ||  || 30\24 ||  ||  || 500 || 350 || 83.333 || 125 || 138.197 || 166.667 ||
||  ||  ||  ||  || 81\65 || 498.4615 || 350.769 || 83.076 || 124.615 || 137.771 || 166.154 ||
||  ||  ||  || 51\41 ||  || 497.561 || 351.2195 || 82.927 || 124.39 || 137.5225 || 165.854 ||
||  ||  ||  ||  || 72\58 || 496.552 || 351.724 || 82.758 || 124.137 || 137.2435 || 165.517 ||
||  || 21\17 ||  ||  ||  || 494.116 || 325.941 || 82.352 || 123.529 || 136.571 || 164.706 ||
||  ||  ||  ||  || 75\61 || 491.803 || 354.098 || 81.967 || 122.951 || 135.931 || 163.934 ||
||  ||  ||  || 54\44 ||  || 490.909 || 354.5455 || 81.818 || 122.727 || 135.684 || 163.636 ||
||  ||  ||  ||  || 87\71 || 490.141 || 354.93 || 81.69 || 122.535 || 135.472 || 163.38 ||
||  ||  || 33\27 ||  ||  || 488.889 || 355.556 || 81.481 || 122.222 || 135.126 || 162.462 ||
||  ||  ||  ||  || 78\64 || 487.5 || 356.25 || 81.25 || 121.875 || 134.742 || 162.5 ||
||  ||  ||  || 45\37 ||  || 486.4865 || 356.757 || 81.081 || 121.622 || 134.462 || 162.162 ||
||  ||  ||  ||  || 57\47 || 485.106 || 357.447 || 80.851 || 121.277 || 134.08 || 162.702 ||
|| 12\10 ||  ||  ||  ||  || 480 || 360 || 80 || 120 || 132.669 || 160 ||</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;3L 6s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;This MOS has generators which range between 0 and 133.333 cents and three periods per octave and runs Lss Lss Lss.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;3L 6s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;This MOS has generators which range between 0 and 133.333 cents and three periods per octave and runs Lss Lss Lss.&lt;br /&gt;
Line 312: Line 334:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
&lt;br /&gt;
From a standard diatonic point of view, an optimized (MOD)MOS pattern of 3L+6s works out to become one of the modes of the Mohajira diatonic or Rast scale extended to a minor tenth, the MOS itself being the tritetrachordal Mixolydian b10 scale, the interesting property of which being that it treats a seventh as a perfect interval rather than a fifth, however far off it may be from a perfect 7/4. As a temperament, it has period ~4/3 and generator up to 1/3 of that, making a subrange of the range between its median and maximum generators represent an ~12/11 (given harmonic entropy as coarse as that of &lt;a class="wiki_link" href="/Mavila"&gt;Mavila&lt;/a&gt;, 120 cents can be an acceptable 12\11).&lt;br /&gt;
&lt;br /&gt;
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;th colspan="5"&gt;Minor Tenth&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Fourth&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Neutral Third&lt;br /&gt;
&lt;/th&gt;
        &lt;th colspan="4"&gt;&lt;span style="display: block; text-align: center;"&gt;Generator&lt;/span&gt;&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;th colspan="5"&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;&lt;span style="display: block; text-align: center;"&gt;Mean&lt;/span&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;&lt;span style="display: block; text-align: center;"&gt;Median&lt;/span&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;&lt;span style="display: block; text-align: center;"&gt;Golden&lt;/span&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Maximum&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9\7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;514.286&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;342.857&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;85.714&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;128.571&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;142.145&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;171.429&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;48\38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;505.263&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;347.368&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;84.2105&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;126.316&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;139.651&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;168.421&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;39\31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;503.226&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;348.387&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;83.871&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;125.8065&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;139.088&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;167.742&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;69\55&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;506.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;349.091&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;83.636&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;125.4545&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;138.699&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;167.273&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;30\24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;500&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;350&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;83.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;125&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;138.197&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;166.667&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;81\65&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;498.4615&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;350.769&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;83.076&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;124.615&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;137.771&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;166.154&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;51\41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;497.561&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;351.2195&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;82.927&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;124.39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;137.5225&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;165.854&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;72\58&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;496.552&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;351.724&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;82.758&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;124.137&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;137.2435&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;165.517&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;21\17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;494.116&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;325.941&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;82.352&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;123.529&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;136.571&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;164.706&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;75\61&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;491.803&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;354.098&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;81.967&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;122.951&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;135.931&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;163.934&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;54\44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;490.909&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;354.5455&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;81.818&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;122.727&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;135.684&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;163.636&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;87\71&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;490.141&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;354.93&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;81.69&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;122.535&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;135.472&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;163.38&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;33\27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;488.889&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;355.556&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;81.481&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;122.222&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;135.126&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;162.462&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;78\64&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;487.5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;356.25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;81.25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;121.875&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;134.742&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;162.5&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;45\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;486.4865&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;356.757&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;81.081&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;121.622&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;134.462&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;162.162&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;57\47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;485.106&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;357.447&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;80.851&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;121.277&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;134.08&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;162.702&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12\10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;480&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;360&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;80&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;120&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;132.669&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;160&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;