3L 6s: Difference between revisions

Wikispaces>JosephRuhf
**Imported revision 599896900 - Original comment: **
Wikispaces>JosephRuhf
**Imported revision 599920156 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016-11-20 13:44:53 UTC</tt>.<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016-11-20 20:51:44 UTC</tt>.<br>
: The original revision id was <tt>599896900</tt>.<br>
: The original revision id was <tt>599920156</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 28: Line 28:
|| 1\9 ||  ||  ||  ||  || 133.333 ||=  ||
|| 1\9 ||  ||  ||  ||  || 133.333 ||=  ||


From a standard diatonic point of view, an optimized (MOD)MOS pattern of 3L+6s works out to become one of the modes of the Mohajira diatonic or Rast scale extended to a minor tenth, the MOS itself being the tritetrachordal Mixolydian b10 scale, the interesting property of which being that it treats a seventh as a perfect interval rather than a fifth, however far off it may be from a perfect 7/4. As a temperament, it has period ~4/3 and generator up to 1/3 of that, making a subrange of the range between its median and maximum generators represent an ~12/11 (given harmonic entropy as coarse as that of [[Mavila]], 120 cents can be an acceptable 12\11).
From a standard diatonic point of view, an optimized (MOD)MOS pattern of 3L+6s works out to become one of the modes of the Mohajira diatonic or Rast scale extended to a minor tenth, the MOS itself being the tritetrachordal Rast b10 scale, the interesting property of which being that it treats a seventh as a perfect interval rather than a fifth, however far off it may be from a perfect 7/4. As a temperament, it has period ~4/3 and generator up to 1/3 of that, making a subrange of the range between its median and maximum generators represent an ~12/11 (given harmonic entropy as coarse as that of [[Mavila]], 120 cents can be an acceptable 12\11).


||||||||||~ Minor Tenth ||~ Fourth ||~ Neutral Third ||||||||~ &lt;span style="display: block; text-align: center;"&gt;Generator&lt;/span&gt; ||
||||||||||~ Minor Tenth ||~ Fourth ||~ Hemififth ||||||||~ &lt;span style="display: block; text-align: center;"&gt;Generator&lt;/span&gt; ||
||||||||||~  ||~  ||~  ||~ &lt;span style="display: block; text-align: center;"&gt;Mean&lt;/span&gt; ||~ &lt;span style="display: block; text-align: center;"&gt;Median&lt;/span&gt; ||~ &lt;span style="display: block; text-align: center;"&gt;Golden&lt;/span&gt; ||~ Maximum ||
||||||||||~  ||~  ||~  ||~ &lt;span style="display: block; text-align: center;"&gt;Mean&lt;/span&gt; ||~ &lt;span style="display: block; text-align: center;"&gt;Median&lt;/span&gt; ||~ &lt;span style="display: block; text-align: center;"&gt;Golden&lt;/span&gt; ||~ Maximum ||
|| 9\7 ||  ||  ||  ||  || 514.286 || 342.857 || 85.714 || 128.571 || 142.145 || 171.429 ||
|| 9\7 ||  ||  ||  ||  || 514.286 || 342.857 || 85.714 || 128.571 || 142.145 || 171.429 ||
||  ||  ||  ||  || 48\38 || 505.263 || 347.368 || 84.2105 || 126.316 || 139.651 || 168.421 ||
||  ||  ||  ||  || 48\38 || 505.263 || 347.368 || 84.2105 || 126.316 || 139.651 || 168.421 ||
||  ||  ||  || 39\31 ||  || 503.226 || 348.387 || 83.871 || [[tel:125.8065|125.8065]] || 139.088 || 167.742 ||
||  ||  ||  || 39\31 ||  || 503.226 || 348.387 || 83.871 || [[tel/125.8065|125.8065]] || 139.088 || 167.742 ||
||  ||  ||  ||  || 69\55 || 506.667 || 349.091 || 83.636 || [[tel:125.4545|125.4545]] || 138.699 || 167.273 ||
||  ||  ||  ||  || 69\55 || 506.667 || 349.091 || 83.636 || [[tel/125.4545|125.4545]] || 138.699 || 167.273 ||
||  ||  || 30\24 ||  ||  || 500 || 350 || 83.333 || 125 || 138.197 || 166.667 ||
||  ||  || 30\24 ||  ||  || 500 || 350 || 83.333 || 125 || 138.197 || 166.667 ||
||  ||  ||  ||  || 81\65 || [[tel:498.4615|498.4615]] || 350.769 || 83.076 || 124.615 || 137.771 || 166.154 ||
||  ||  ||  ||  || 81\65 || [[tel/498.4615|498.4615]] || 350.769 || 83.076 || 124.615 || 137.771 || 166.154 ||
||  ||  ||  || 51\41 ||  || 497.561 || [[tel:351.2195|351.2195]] || 82.927 || 124.39 || [[tel:137.5225|137.5225]] || 165.854 ||
||  ||  ||  || 51\41 ||  || 497.561 || [[tel/351.2195|351.2195]] || 82.927 || 124.39 || [[tel/137.5225|137.5225]] || 165.854 ||
||  ||  ||  ||  || 72\58 || 496.552 || 351.724 || 82.758 || 124.137 || [[tel:137.2435|137.2435]] || 165.517 ||
||  ||  ||  ||  || 72\58 || 496.552 || 351.724 || 82.758 || 124.137 || [[tel/137.2435|137.2435]] || 165.517 ||
||  || 21\17 ||  ||  ||  || 494.116 || 325.941 || 82.352 || 123.529 || 136.571 || 164.706 ||
||  || 21\17 ||  ||  ||  || 494.116 || 325.941 || 82.352 || 123.529 || 136.571 || 164.706 ||
||  ||  ||  ||  || 75\61 || 491.803 || 354.098 || 81.967 || 122.951 || 135.931 || 163.934 ||
||  ||  ||  ||  || 75\61 || 491.803 || 354.098 || 81.967 || 122.951 || 135.931 || 163.934 ||
||  ||  ||  || 54\44 ||  || 490.909 || [[tel:354.5455|354.5455]] || 81.818 || 122.727 || 135.684 || 163.636 ||
||  ||  ||  || 54\44 ||  || 490.909 || [[tel/354.5455|354.5455]] || 81.818 || 122.727 || 135.684 || 163.636 ||
||  ||  ||  ||  || 87\71 || 490.141 || 354.93 || 81.69 || 122.535 || 135.472 || 163.38 ||
||  ||  ||  ||  || 87\71 || 490.141 || 354.93 || 81.69 || 122.535 || 135.472 || 163.38 ||
||  ||  || 33\27 ||  ||  || 488.889 || 355.556 || 81.481 || 122.222 || 135.126 || 162.462 ||
||  ||  || 33\27 ||  ||  || 488.889 || 355.556 || 81.481 || 122.222 || 135.126 || 162.462 ||
||  ||  ||  ||  || 78\64 || 487.5 || 356.25 || 81.25 || 121.875 || 134.742 || 162.5 ||
||  ||  ||  ||  || 78\64 || 487.5 || 356.25 || 81.25 || 121.875 || 134.742 || 162.5 ||
||  ||  ||  || 45\37 ||  || [[tel:486.4865|486.4865]] || 356.757 || 81.081 || 121.622 || 134.462 || 162.162 ||
||  ||  ||  || 45\37 ||  || [[tel/486.4865|486.4865]] || 356.757 || 81.081 || 121.622 || 134.462 || 162.162 ||
||  ||  ||  ||  || 57\47 || 485.106 || 357.447 || 80.851 || 121.277 || 134.08 || 162.702 ||
||  ||  ||  ||  || 57\47 || 485.106 || 357.447 || 80.851 || 121.277 || 134.08 || 162.702 ||
|| 12\10 ||  ||  ||  ||  || 480 || 360 || 80 || 120 || 132.669 || 160 ||</pre></div>
|| 12\10 ||  ||  ||  ||  || 480 || 360 || 80 || 120 || 132.669 || 160 ||
 
From an antidiatonic point of view, an optimized (MOD)MOS pattern of 3L+6s works out to become one of the modes of the (Neapolitan/Melodic) antimajor scale extended to a major tenth, the MOS itself being the tritetrachordal Antimixolydian p10 scale, the interesting property of which being that it treats a seventh as a perfect interval rather than a fifth, however far off it may be from a perfect 11\6. As a temperament, it has period ~4/3 and generator up to 1/3 of that, making the range between its median and maximum generators represent an ~12/11 (given that it is an extended mode of [[Mavila]], 178 cents can be an acceptable 12\11).
 
||||||||||~ Major Tenth ||~ Fourth ||~  ||||||||||~ Generator ||
||||||||||~  ||~  ||~ &lt;span style="display: block; text-align: center;"&gt;Mean&lt;/span&gt; ||||~ &lt;span style="display: block; text-align: center;"&gt;Median&lt;/span&gt; ||~ Golden ||~  ||~ Maximum ||
|| 9\7 ||  ||  ||  ||  || 514.286 || 85.714 |||| 128.571 |||| 142.145 || 171.429 ||
||  ||  ||  ||  || 48\37 || 518.919 || 86.4865 |||| 129.73 |||| 143.426 || 172.973 ||
||  ||  ||  || 39\30 ||  || 520 || 86.667 |||| 130 |||| 143.7245 || 173.333 ||
||  ||  ||  ||  || 69\53 || 520.755 || 86.7925 |||| 130.189 |||| 143.933 || 173.585 ||
||  ||  || 30\23 ||  ||  || 521.739 || 86.9565 |||| 130.435 |||| 144.205 || 173.913 ||
||  ||  ||  ||  || 81\62 || 522.582 || 87.079 |||| 130.645 |||| 144.438 || 174.194 ||
||  ||  ||  || 51\39 ||  || 523.077 || 87.1795 |||| 130.769 |||| 144.575 || 174.359 ||
||  ||  ||  ||  || 72\55 || 523.636 || 87.273 |||| 130.909 |||| 144.7295 || 174.5455 ||
||  || 21\16 ||  ||  ||  || 525 || 87.5 |||| 131.25 |||| 145.106 || 175 ||
||  ||  ||  ||  || 75\57 || 526.316 || 87.719 |||| 131.579 |||| 145.47 || 175.439 ||
||  ||  ||  || 54\41 ||  || 526.829 || 87.805 |||| 131.707 |||| 145.612 || 175.61 ||
||  ||  ||  ||  || 87\66 || 527.273 || 87.879 |||| 131.818 |||| 145.735 || 175.758 ||
||  ||  || 33\25 ||  ||  || 528 || 88 |||| 132 |||| 145.936 || 176 ||
||  ||  ||  ||  || 78\59 || 528.814 || 88.136 |||| 132.203 |||| 146.1605 || 176.271 ||
||  ||  ||  || 45\34 ||  || 529.412 || 88.235 |||| 132.353 |||| 146.326 || 176.471 ||
||  ||  ||  ||  || 57\43 || 530.233 || 88.372 |||| 132.558 |||| 146.553 || 176.744 ||
|| 12\9 ||  ||  ||  ||  || 533.333 || 88.889 |||| 133.333 |||| 147.41 || 177.778 ||</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;3L 6s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;This MOS has generators which range between 0 and 133.333 cents and three periods per octave and runs Lss Lss Lss.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;3L 6s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;This MOS has generators which range between 0 and 133.333 cents and three periods per octave and runs Lss Lss Lss.&lt;br /&gt;
Line 339: Line 361:


&lt;br /&gt;
&lt;br /&gt;
From a standard diatonic point of view, an optimized (MOD)MOS pattern of 3L+6s works out to become one of the modes of the Mohajira diatonic or Rast scale extended to a minor tenth, the MOS itself being the tritetrachordal Mixolydian b10 scale, the interesting property of which being that it treats a seventh as a perfect interval rather than a fifth, however far off it may be from a perfect 7/4. As a temperament, it has period ~4/3 and generator up to 1/3 of that, making a subrange of the range between its median and maximum generators represent an ~12/11 (given harmonic entropy as coarse as that of &lt;a class="wiki_link" href="/Mavila"&gt;Mavila&lt;/a&gt;, 120 cents can be an acceptable 12\11).&lt;br /&gt;
From a standard diatonic point of view, an optimized (MOD)MOS pattern of 3L+6s works out to become one of the modes of the Mohajira diatonic or Rast scale extended to a minor tenth, the MOS itself being the tritetrachordal Rast b10 scale, the interesting property of which being that it treats a seventh as a perfect interval rather than a fifth, however far off it may be from a perfect 7/4. As a temperament, it has period ~4/3 and generator up to 1/3 of that, making a subrange of the range between its median and maximum generators represent an ~12/11 (given harmonic entropy as coarse as that of &lt;a class="wiki_link" href="/Mavila"&gt;Mavila&lt;/a&gt;, 120 cents can be an acceptable 12\11).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;


Line 349: Line 371:
         &lt;th&gt;Fourth&lt;br /&gt;
         &lt;th&gt;Fourth&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th&gt;Neutral Third&lt;br /&gt;
         &lt;th&gt;Hemififth&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th colspan="4"&gt;&lt;span style="display: block; text-align: center;"&gt;Generator&lt;/span&gt;&lt;br /&gt;
         &lt;th colspan="4"&gt;&lt;span style="display: block; text-align: center;"&gt;Generator&lt;/span&gt;&lt;br /&gt;
Line 776: Line 798:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;160&lt;br /&gt;
         &lt;td&gt;160&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
&lt;br /&gt;
From an antidiatonic point of view, an optimized (MOD)MOS pattern of 3L+6s works out to become one of the modes of the (Neapolitan/Melodic) antimajor scale extended to a major tenth, the MOS itself being the tritetrachordal Antimixolydian p10 scale, the interesting property of which being that it treats a seventh as a perfect interval rather than a fifth, however far off it may be from a perfect 11\6. As a temperament, it has period ~4/3 and generator up to 1/3 of that, making the range between its median and maximum generators represent an ~12/11 (given that it is an extended mode of &lt;a class="wiki_link" href="/Mavila"&gt;Mavila&lt;/a&gt;, 178 cents can be an acceptable 12\11).&lt;br /&gt;
&lt;br /&gt;
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;th colspan="5"&gt;Major Tenth&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Fourth&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;th colspan="5"&gt;Generator&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;th colspan="5"&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;&lt;span style="display: block; text-align: center;"&gt;Mean&lt;/span&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;th colspan="2"&gt;&lt;span style="display: block; text-align: center;"&gt;Median&lt;/span&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Golden&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Maximum&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9\7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;514.286&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;85.714&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;128.571&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;142.145&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;171.429&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;48\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;518.919&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;86.4865&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;129.73&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;143.426&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;172.973&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;39\30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;520&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;86.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;130&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;143.7245&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;173.333&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;69\53&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;520.755&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;86.7925&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;130.189&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;143.933&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;173.585&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;30\23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;521.739&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;86.9565&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;130.435&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;144.205&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;173.913&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;81\62&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;522.582&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;87.079&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;130.645&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;144.438&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;174.194&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;51\39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;523.077&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;87.1795&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;130.769&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;144.575&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;174.359&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;72\55&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;523.636&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;87.273&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;130.909&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;144.7295&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;174.5455&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;21\16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;525&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;87.5&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;131.25&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;145.106&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;175&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;75\57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;526.316&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;87.719&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;131.579&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;145.47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;175.439&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;54\41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;526.829&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;87.805&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;131.707&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;145.612&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;175.61&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;87\66&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;527.273&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;87.879&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;131.818&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;145.735&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;175.758&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;33\25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;528&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;88&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;132&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;145.936&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;176&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;78\59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;528.814&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;88.136&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;132.203&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;146.1605&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;176.271&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;45\34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;529.412&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;88.235&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;132.353&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;146.326&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;176.471&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;57\43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;530.233&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;88.372&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;132.558&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;146.553&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;176.744&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12\9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;533.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;88.889&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;133.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;147.41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;177.778&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;