55edo: Difference between revisions

Wikispaces>xenwolf
**Imported revision 320984000 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
=<span style="color: #008523; font-family: 'Times New Roman',Times,serif; font-size: 113%;">55 tone equal temperament</span>=
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2012-04-16 07:02:46 UTC</tt>.<br>
: The original revision id was <tt>320984000</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=&lt;span style="color: #008523; font-family: 'Times New Roman',Times,serif; font-size: 113%;"&gt;55 tone equal temperament&lt;/span&gt;=  


**//55edo//** divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to [[1-6 Syntonic Comma Meantone|1/6 comma meantone]] (and is almost exactly 10/57 comma meantone.) [[http://en.wikipedia.org/wiki/Georg_Philipp_Telemann|Telemann]] suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by [[http://en.wikipedia.org/wiki/Leopold_Mozart|Leopold]] and [[http://en.wikipedia.org/wiki/Wolfgang_Amadeus_Mozart|Wolfgang Mozart]]. It can also be used for [[Meantone family|mohajira and liese]] temperaments.
'''''55edo''''' divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to [[1-6_Syntonic_Comma_Meantone|1/6 comma meantone]] (and is almost exactly 10/57 comma meantone.) [http://en.wikipedia.org/wiki/Georg_Philipp_Telemann Telemann] suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by [http://en.wikipedia.org/wiki/Leopold_Mozart Leopold] and [http://en.wikipedia.org/wiki/Wolfgang_Amadeus_Mozart Wolfgang Mozart]. It can also be used for [[Meantone_family|mohajira and liese]] temperaments.


5-limit commas: 81/80, &lt;31 1 -14|
5-limit commas: 81/80, &lt;31 1 -14|
Line 16: Line 9:
11-limit commas: 81/80, 121/120, 176/175, 686/675
11-limit commas: 81/80, 121/120, 176/175, 686/675


==Intervals==  
==Intervals==
|| Degrees of 55-EDO || Cents value ||
|| 0 || 0 ||
|| 1 || 21.818 ||
|| 2 || 43.636 ||
|| 3 || 65.455 ||
|| 4 || 87.273 ||
|| 5 || 109.091 ||
|| 6 || 130.909 ||
|| 7 || 152.727 ||
|| 8 || 174.545 ||
|| 9 || 196.364 ||
|| 10 || 218.182 ||
|| 11 || 240.000 ||
|| 12 || 261.818 ||
|| 13 || 283.636 ||
|| 14 || 305.455 ||
|| 15 || 327.273 ||
|| 16 || 349.091 ||
|| 17 || 370.909 ||
|| 18 || 392.727 ||
|| 19 || 414.545 ||
|| 20 || 436.364 ||
|| 21 || 458.182 ||
|| 22 || 480.000 ||
|| 23 || 501.818 ||
|| 24 || 523.636 ||
|| 25 || 545.455 ||
|| 26 || 567.273 ||
|| 27 || 589.091 ||
|| 28 || 610.909 ||
|| 29 || 632.727 ||
|| 30 || 654.545 ||
|| 31 || 676.364 ||
|| 32 || 698.182 ||
|| 33 || 720.000 ||
|| 34 || 741.818 ||
|| 35 || 763.636 ||
|| 36 || 785.455 ||
|| 37 || 807.273 ||
|| 38 || 829.091 ||
|| 39 || 850.909 ||
|| 40 || 872.727 ||
|| 41 || 894.545 ||
|| 42 || 916.364 ||
|| 43 || 938.182 ||
|| 44 || 960.000 ||
|| 45 || 981.818 ||
|| 46 || 1003.636 ||
|| 47 || 1025.455 ||
|| 48 || 1047.273 ||
|| 49 || 1069.091 ||
|| 50 || 1090.909 ||
|| 51 || 1112.727 ||
|| 52 || 1134.545 ||
|| 53 || 1156.364 ||
|| 54 || 1178.182 ||
|| 55 || 1200.000 ||


[[http://www.seraph.it/dep/int/AdagioKV540.mp3|Mozart - Adagio in B minor KV 540]] by [[Carlo Serafini]] ([[http://www.seraph.it/blog_files/706c4662272db7703def4d57edfcb955-119.html|blog entry]])
{| class="wikitable"
|-
| | Degrees of 55-EDO
| | Cents value
|-
| | 0
| | 0
|-
| | 1
| | 21.818
|-
| | 2
| | 43.636
|-
| | 3
| | 65.455
|-
| | 4
| | 87.273
|-
| | 5
| | 109.091
|-
| | 6
| | 130.909
|-
| | 7
| | 152.727
|-
| | 8
| | 174.545
|-
| | 9
| | 196.364
|-
| | 10
| | 218.182
|-
| | 11
| | 240.000
|-
| | 12
| | 261.818
|-
| | 13
| | 283.636
|-
| | 14
| | 305.455
|-
| | 15
| | 327.273
|-
| | 16
| | 349.091
|-
| | 17
| | 370.909
|-
| | 18
| | 392.727
|-
| | 19
| | 414.545
|-
| | 20
| | 436.364
|-
| | 21
| | 458.182
|-
| | 22
| | 480.000
|-
| | 23
| | 501.818
|-
| | 24
| | 523.636
|-
| | 25
| | 545.455
|-
| | 26
| | 567.273
|-
| | 27
| | 589.091
|-
| | 28
| | 610.909
|-
| | 29
| | 632.727
|-
| | 30
| | 654.545
|-
| | 31
| | 676.364
|-
| | 32
| | 698.182
|-
| | 33
| | 720.000
|-
| | 34
| | 741.818
|-
| | 35
| | 763.636
|-
| | 36
| | 785.455
|-
| | 37
| | 807.273
|-
| | 38
| | 829.091
|-
| | 39
| | 850.909
|-
| | 40
| | 872.727
|-
| | 41
| | 894.545
|-
| | 42
| | 916.364
|-
| | 43
| | 938.182
|-
| | 44
| | 960.000
|-
| | 45
| | 981.818
|-
| | 46
| | 1003.636
|-
| | 47
| | 1025.455
|-
| | 48
| | 1047.273
|-
| | 49
| | 1069.091
|-
| | 50
| | 1090.909
|-
| | 51
| | 1112.727
|-
| | 52
| | 1134.545
|-
| | 53
| | 1156.364
|-
| | 54
| | 1178.182
|-
| | 55
| | 1200.000
|}


[[http://tonalsoft.com/monzo/55edo/55edo.aspx|"Mozart's tuning: 55edo"]] (containing another listening example) in the [[tonalsoft encyclopedia]]</pre></div>
[http://www.seraph.it/dep/int/AdagioKV540.mp3 Mozart - Adagio in B minor KV 540] by [[Carlo_Serafini|Carlo Serafini]] ([http://www.seraph.it/blog_files/706c4662272db7703def4d57edfcb955-119.html blog entry])
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;55edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x55 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #008523; font-family: 'Times New Roman',Times,serif; font-size: 113%;"&gt;55 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
&lt;br /&gt;
&lt;strong&gt;&lt;em&gt;55edo&lt;/em&gt;&lt;/strong&gt; divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to &lt;a class="wiki_link" href="/1-6%20Syntonic%20Comma%20Meantone"&gt;1/6 comma meantone&lt;/a&gt; (and is almost exactly 10/57 comma meantone.) &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Georg_Philipp_Telemann" rel="nofollow"&gt;Telemann&lt;/a&gt; suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Leopold_Mozart" rel="nofollow"&gt;Leopold&lt;/a&gt; and &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Wolfgang_Amadeus_Mozart" rel="nofollow"&gt;Wolfgang Mozart&lt;/a&gt;. It can also be used for &lt;a class="wiki_link" href="/Meantone%20family"&gt;mohajira and liese&lt;/a&gt; temperaments.&lt;br /&gt;
&lt;br /&gt;
5-limit commas: 81/80, &amp;lt;31 1 -14|&lt;br /&gt;
&lt;br /&gt;
7-limit commas: 81/80, 686/675, 6144/6125&lt;br /&gt;
&lt;br /&gt;
11-limit commas: 81/80, 121/120, 176/175, 686/675&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x55 tone equal temperament-Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Intervals&lt;/h2&gt;


&lt;table class="wiki_table"&gt;
[http://tonalsoft.com/monzo/55edo/55edo.aspx "Mozart's tuning: 55edo"] (containing another listening example) in the [[tonalsoft_encyclopedia|tonalsoft encyclopedia]]      [[Category:55edo]]
    &lt;tr&gt;
[[Category:edo]]
        &lt;td&gt;Degrees of 55-EDO&lt;br /&gt;
[[Category:intervals]]
&lt;/td&gt;
[[Category:meantone]]
        &lt;td&gt;Cents value&lt;br /&gt;
[[Category:theory]]
&lt;/td&gt;
[[Category:todo:unify_precision]]
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;21.818&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;43.636&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;65.455&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;87.273&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;109.091&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;130.909&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;152.727&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;174.545&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;196.364&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;218.182&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;240.000&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;261.818&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;283.636&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;305.455&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;327.273&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;349.091&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;370.909&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;392.727&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;414.545&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;436.364&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;458.182&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;480.000&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;501.818&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;523.636&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;545.455&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;567.273&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;589.091&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;610.909&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;632.727&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;654.545&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;676.364&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;698.182&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;720.000&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;741.818&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;763.636&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;785.455&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;807.273&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;829.091&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;850.909&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;872.727&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;894.545&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;916.364&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;938.182&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;960.000&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;981.818&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1003.636&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1025.455&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;48&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1047.273&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1069.091&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1090.909&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1112.727&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;52&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1134.545&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;53&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1156.364&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;54&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1178.182&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;55&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200.000&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.seraph.it/dep/int/AdagioKV540.mp3" rel="nofollow"&gt;Mozart - Adagio in B minor KV 540&lt;/a&gt; by &lt;a class="wiki_link" href="/Carlo%20Serafini"&gt;Carlo Serafini&lt;/a&gt; (&lt;a class="wiki_link_ext" href="http://www.seraph.it/blog_files/706c4662272db7703def4d57edfcb955-119.html" rel="nofollow"&gt;blog entry&lt;/a&gt;)&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://tonalsoft.com/monzo/55edo/55edo.aspx" rel="nofollow"&gt;&amp;quot;Mozart's tuning: 55edo&amp;quot;&lt;/a&gt; (containing another listening example) in the &lt;a class="wiki_link" href="/tonalsoft%20encyclopedia"&gt;tonalsoft encyclopedia&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>