39edo: Difference between revisions
Wikispaces>JosephRuhf **Imported revision 597388098 - Original comment: ** |
Wikispaces>xenwolf **Imported revision 597693168 - Original comment: removed tel links** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2016-11-01 18:39:32 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>597693168</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt>removed tel links</tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
Line 9: | Line 9: | ||
**39-EDO, 39-ED2** or **39-tET** divides the Octave (Ditave 2/1) in 39 equal parts of 30.76923 Cents each one. If we take 22\39 as a fifth, can be used in Mavila Temperament, and from that point of view seems to have attracted the attention of the Armodue school, an Italian group that use the scheme of [[xenharmonic/7L 2s|Superdiatonic]] LLLsLLLLs like a basical scale for notation and theory, suited in [[xenharmonic/16edo|16-ED2]], and allied systems: [[xenharmonic/25edo|25-ED2]] [1/3-tone 3;2]; [[xenharmonic/41edo|41-ED2]] [1/5-tone 5;3]; and [[xenharmonic/57edo|57]] ED2 [1/7-tone 7;4]. **Hornbostel Temperaments** is included too with: [[xenharmonic/23edo|23-ED2]] [1/3-tone 3;1]; 39-ED2 [1/5-tone 5;2] & [[xenharmonic/62edo|62-ED2]] [1/8-tone 8;3]. [[223edo|223-ED2]], the best accuracy for Hornbostel temperament fits very good with Armodue like 1/29-tone 29;10 version. Note that [[101edo|101]], [[131edo|131]], [[177edo|177]] & [[200edo|200]] ED2s are tempered systems that [[http://www.h-pi.com/eop-ogolevets.html|Alexei Ogolevets]] (Ukraine, 1891 - 1967) was proposing in his List of Temperaments, in which the Armodue system fits very well in all these. | **39-EDO, 39-ED2** or **39-tET** divides the Octave (Ditave 2/1) in 39 equal parts of 30.76923 Cents each one. If we take 22\39 as a fifth, can be used in Mavila Temperament, and from that point of view seems to have attracted the attention of the Armodue school, an Italian group that use the scheme of [[xenharmonic/7L 2s|Superdiatonic]] LLLsLLLLs like a basical scale for notation and theory, suited in [[xenharmonic/16edo|16-ED2]], and allied systems: [[xenharmonic/25edo|25-ED2]] [1/3-tone 3;2]; [[xenharmonic/41edo|41-ED2]] [1/5-tone 5;3]; and [[xenharmonic/57edo|57]] ED2 [1/7-tone 7;4]. **Hornbostel Temperaments** is included too with: [[xenharmonic/23edo|23-ED2]] [1/3-tone 3;1]; 39-ED2 [1/5-tone 5;2] & [[xenharmonic/62edo|62-ED2]] [1/8-tone 8;3]. [[223edo|223-ED2]], the best accuracy for Hornbostel temperament fits very good with Armodue like 1/29-tone 29;10 version. Note that [[101edo|101]], [[131edo|131]], [[177edo|177]] & [[200edo|200]] ED2s are tempered systems that [[http://www.h-pi.com/eop-ogolevets.html|Alexei Ogolevets]] (Ukraine, 1891 - 1967) was proposing in his List of Temperaments, in which the Armodue system fits very well in all these. | ||
However, its 23\39 fifth, 5.737 Cents sharp, is in much better tune than the Mavila fifth which like all Mavila fifths is very, very flat, in this case, 25 Cents flat. Together with its best third which is the familiar 400 cents of 12 equal, we get a system which tempers out the diesis, 128/125, and the amity comma, | However, its 23\39 fifth, 5.737 Cents sharp, is in much better tune than the Mavila fifth which like all Mavila fifths is very, very flat, in this case, 25 Cents flat. Together with its best third which is the familiar 400 cents of 12 equal, we get a system which tempers out the diesis, 128/125, and the amity comma, 1600000/1594323. We have two choices for a map for 7, but the sharp one works better with the 3 and 5, which adds 64/63 and 126/125 to the list. Tempering out both 128/125 and 64/63 makes 39EDO, in some few ways, allied to 12-ET in supporting augene temperament, and is in fact, an excellent choice for an augene tuning, but one difference is that 39 has a fine 11, and adding it to consideration we find that 39-EDO tempers out 99/98 and 121/120 also. This better choice for 39et is <39 62 91 110 135|. | ||
A particular anecdote with this 39 divisions per 2/1 was made in the Teliochordon, in 1788 by Charles Clagget (Ireland, 1740? - 1820), a little extract [[http://ml.oxfordjournals.org/content/76/2/291.extract.jpg|here]]. | A particular anecdote with this 39 divisions per 2/1 was made in the Teliochordon, in 1788 by Charles Clagget (Ireland, 1740? - 1820), a little extract [[http://ml.oxfordjournals.org/content/76/2/291.extract.jpg|here]]. | ||
Line 25: | Line 25: | ||
||~ **Degrees** ||~ **Armodue note** ||~ **Cents size** ||~ **[[xenharmonic/Nearest just interval|Nearest Just I]]nterval** ||~ **Cents value** ||~ **Error** ||~ 11-limit Ratio Assuming | ||~ **Degrees** ||~ **Armodue note** ||~ **Cents size** ||~ **[[xenharmonic/Nearest just interval|Nearest Just I]]nterval** ||~ **Cents value** ||~ **Error** ||~ 11-limit Ratio Assuming | ||
< | <39 62 91 110 135| [[Val]] || | ||
|| 0 || 1 || 0 || 1/1 || 0 || None || 1/1 || | || 0 || 1 || 0 || 1/1 || 0 || None || 1/1 || | ||
|| 1 || 1‡ (9#) || 30.7692 || 57/56 || 30.6421 || +0.1271 || || | || 1 || 1‡ (9#) || 30.7692 || 57/56 || 30.6421 || +0.1271 || || | ||
|| 2 || 2b || 61.5385 || 29/28 || 60.7513 || +0.7872 || || | || 2 || 2b || 61.5385 || 29/28 || 60.7513 || +0.7872 || || | ||
|| 3 || 1# || 92.3077 || 39/37 || 91.1386 || +1.1691 || || | || 3 || 1# || 92.3077 || 39/37 || 91.1386 || +1.1691 || || | ||
|| 4 || 2v || | || 4 || 2v || 123.0769 || 44/41 || 122.2555 || +0.8214 || || | ||
|| 5 || 2 || | || 5 || 2 || 153.8462 || 35/32 || 155.1396 || -1.2934 || 12/11, 11/10 || | ||
|| 6 || 2‡ || | || 6 || 2‡ || 184.6154 || 10/9 || 182.4037 || +2.2117 || 10/9 || | ||
|| 7**·** || 3b | | || 7**·** || 3b || 215.3846 || 17/15 || 216.6867 || -1.3021 || 8/7, 9/8 || | ||
|| 8 || 2# | | || 8 || 2# || 246.1538 || 15/13 || 247.7411 || -1.5873 || || | ||
|| 9 || 3v | | || 9 || 3v || 276.9231 || 27/23 || 277.5907 || -0.6676 || 7/6 || | ||
|| 10 || 3 | | || 10 || 3 || 307.6923 || 43/36 || 307.6077 || +0.0846 || 6/5 || | ||
|| 11 || 3‡ | | || 11 || 3‡ || 338.4615 || 17/14 || 336.1295 || +2.332 || 11/9 || | ||
|| 12**·** || 4b || | || 12**·** || 4b || 369.2308 || 26/21 || 369.7468 || -0.516 || || | ||
|| 13 || 3# || 400 || 34/27 || | || 13 || 3# || 400 || 34/27 || 399.0904 || +0.9096 || 5/4 || | ||
|| 14 || 4v (5b) | | || 14 || 4v (5b) || 430.7692 || 41/32 || 429.0624 || +1.7068 || 9/7, 14/11 || | ||
|| 15 || 4 | | || 15 || 4 || 461.5385 || 30/23 || 459.9944 || +1.5441 || || | ||
|| 16 || 4‡ (5v) || | || 16 || 4‡ (5v) || 492.3077 || 85/64 || 491.2691 || +1.0386 || 4/3 || | ||
|| 17**·** || 5 || | || 17**·** || 5 || 523.0769 || 23/17 || 523.3189 || -0.242 || || | ||
|| 18 || 5‡ (4#) | | || 18 || 5‡ (4#) || 553.8462 || 11/8 || 551.3179 || +2.5283 || 11/8 || | ||
|| 19 || 6b | | || 19 || 6b || 584.6154 || 7/5 || 582.5122 || +2.1032 || 7/5 || | ||
|| 20 || 5# | | || 20 || 5# || 615.3846 || 10/7 || 617.4878 || -2.1032 || 10/7 || | ||
|| 21 || 6v | | || 21 || 6v || 646.1538 || 16/11 || 648.6821 || -2.5283 || 16/11 || | ||
|| 22**·** || 6 | | || 22**·** || 6 || 676.9231 || 34/23 || 676.6811 || +0.242 || || | ||
|| 23 || 6‡ || | || 23 || 6‡ || 707.6923 || 128/85 || 708.7309 || -1.0386 || 3/2 || | ||
|| 24 || 7b || | || 24 || 7b || 738.4615 || 23/15 || 740.0056 || -1.5441 || || | ||
|| 25 || 6# | | || 25 || 6# || 769.2308 || 64/41 || 770.9376 || -1.7068 || 14/9, 11/7 || | ||
|| 26 || 7v || 800 || 27/17 | | || 26 || 7v || 800 || 27/17 || 800.9096 || -0.9096 || 8/5 || | ||
|| 27**·** || 7 || | || 27**·** || 7 || 830.7692 || 21/13 || 830.2532 || +0.516 || || | ||
|| 28 || 7‡ || | || 28 || 7‡ || 861.5385 || 28/17 || 863.8705 || -2.332 || 18/11 || | ||
|| 29 || 8b | | || 29 || 8b || 892.3077 || 72/43 || 892.3923 || -0.0846 || 5/3 || | ||
|| 30 || 7# | | || 30 || 7# || 923.0769 || 46/27 || 922.4093 || +0.6676 || 12/7 || | ||
|| 31 || 8v | | || 31 || 8v || 953.8462 || 26/15 || 952.2589 || +1.5873 || || | ||
|| 32**·** || 8 | | || 32**·** || 8 || 984.6154 || 30/17 || 983.3133 || +1.3021 || 7/4, 16/9 || | ||
|| 33 || 8‡ || 1015.3846 || 9/5 || 1017.5963 || -2.2117 || 9/5 || | || 33 || 8‡ || 1015.3846 || 9/5 || 1017.5963 || -2.2117 || 9/5 || | ||
|| 34 || 9b || 1046.1538 || 64/35 || 1044.8604 || +1.2934 || 11/6, 20/11 || | || 34 || 9b || 1046.1538 || 64/35 || 1044.8604 || +1.2934 || 11/6, 20/11 || | ||
Line 77: | Line 77: | ||
14 14 11 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/2L 1s|2L 1s]] | 14 14 11 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/2L 1s|2L 1s]] | ||
11 11 11 6 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/3L 1s|3L 1s]] | |||
10 10 10 9 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/3L 1s|3L 1s]] | |||
11 3 11 11 3 - [[xenharmonic/MOSScales|MOS]] of type [[3L 2s|3L 2s (Father pentatonic)]] | |||
5 12 5 5 12 - [[xenharmonic/MOSScales|MOS]] of type 2L 3s (Mavila pentatonic) | 5 12 5 5 12 - [[xenharmonic/MOSScales|MOS]] of type 2L 3s (Mavila pentatonic) | ||
7 7 9 7 9 - [[xenharmonic/MOSScales|MOS]] of type 2L 3s (Superpythagorean pentatonic) | 7 7 9 7 9 - [[xenharmonic/MOSScales|MOS]] of type 2L 3s (Superpythagorean pentatonic) | ||
8 8 8 8 7 - [[xenharmonic/MOSScales|MOS]] of type [[4L 1s|4L 1s (Bug pentatonic)]] | 8 8 8 8 7 - [[xenharmonic/MOSScales|MOS]] of type [[4L 1s|4L 1s (Bug pentatonic)]] | ||
10 3 10 3 10 3 - [[xenharmonic/MOSScales|MOS]] of type [[3L 3s|3L 3s (Augmented hexatonic)]] | |||
9 4 9 4 9 4 - [[xenharmonic/MOSScales|MOS]] of type [[3L 3s|3L 3s (Augmented hexatonic)]] | 9 4 9 4 9 4 - [[xenharmonic/MOSScales|MOS]] of type [[3L 3s|3L 3s (Augmented hexatonic)]] | ||
8 5 8 5 8 5 - [[xenharmonic/MOSScales|MOS]] of type [[3L 3s|3L 3s (Augmented hexatonic)]] | 8 5 8 5 8 5 - [[xenharmonic/MOSScales|MOS]] of type [[3L 3s|3L 3s (Augmented hexatonic)]] | ||
Line 156: | Line 156: | ||
<br /> | <br /> | ||
<strong>39-EDO, 39-ED2</strong> or <strong>39-tET</strong> divides the Octave (Ditave 2/1) in 39 equal parts of 30.76923 Cents each one. If we take 22\39 as a fifth, can be used in Mavila Temperament, and from that point of view seems to have attracted the attention of the Armodue school, an Italian group that use the scheme of <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7L%202s">Superdiatonic</a> LLLsLLLLs like a basical scale for notation and theory, suited in <a class="wiki_link" href="http://xenharmonic.wikispaces.com/16edo">16-ED2</a>, and allied systems: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/25edo">25-ED2</a> [1/3-tone 3;2]; <a class="wiki_link" href="http://xenharmonic.wikispaces.com/41edo">41-ED2</a> [1/5-tone 5;3]; and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/57edo">57</a> ED2 [1/7-tone 7;4]. <strong>Hornbostel Temperaments</strong> is included too with: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/23edo">23-ED2</a> [1/3-tone 3;1]; 39-ED2 [1/5-tone 5;2] &amp; <a class="wiki_link" href="http://xenharmonic.wikispaces.com/62edo">62-ED2</a> [1/8-tone 8;3]. <a class="wiki_link" href="/223edo">223-ED2</a>, the best accuracy for Hornbostel temperament fits very good with Armodue like 1/29-tone 29;10 version. Note that <a class="wiki_link" href="/101edo">101</a>, <a class="wiki_link" href="/131edo">131</a>, <a class="wiki_link" href="/177edo">177</a> &amp; <a class="wiki_link" href="/200edo">200</a> ED2s are tempered systems that <a class="wiki_link_ext" href="http://www.h-pi.com/eop-ogolevets.html" rel="nofollow">Alexei Ogolevets</a> (Ukraine, 1891 - 1967) was proposing in his List of Temperaments, in which the Armodue system fits very well in all these.<br /> | <strong>39-EDO, 39-ED2</strong> or <strong>39-tET</strong> divides the Octave (Ditave 2/1) in 39 equal parts of 30.76923 Cents each one. If we take 22\39 as a fifth, can be used in Mavila Temperament, and from that point of view seems to have attracted the attention of the Armodue school, an Italian group that use the scheme of <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7L%202s">Superdiatonic</a> LLLsLLLLs like a basical scale for notation and theory, suited in <a class="wiki_link" href="http://xenharmonic.wikispaces.com/16edo">16-ED2</a>, and allied systems: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/25edo">25-ED2</a> [1/3-tone 3;2]; <a class="wiki_link" href="http://xenharmonic.wikispaces.com/41edo">41-ED2</a> [1/5-tone 5;3]; and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/57edo">57</a> ED2 [1/7-tone 7;4]. <strong>Hornbostel Temperaments</strong> is included too with: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/23edo">23-ED2</a> [1/3-tone 3;1]; 39-ED2 [1/5-tone 5;2] &amp; <a class="wiki_link" href="http://xenharmonic.wikispaces.com/62edo">62-ED2</a> [1/8-tone 8;3]. <a class="wiki_link" href="/223edo">223-ED2</a>, the best accuracy for Hornbostel temperament fits very good with Armodue like 1/29-tone 29;10 version. Note that <a class="wiki_link" href="/101edo">101</a>, <a class="wiki_link" href="/131edo">131</a>, <a class="wiki_link" href="/177edo">177</a> &amp; <a class="wiki_link" href="/200edo">200</a> ED2s are tempered systems that <a class="wiki_link_ext" href="http://www.h-pi.com/eop-ogolevets.html" rel="nofollow">Alexei Ogolevets</a> (Ukraine, 1891 - 1967) was proposing in his List of Temperaments, in which the Armodue system fits very well in all these.<br /> | ||
However, its 23\39 fifth, 5.737 Cents sharp, is in much better tune than the Mavila fifth which like all Mavila fifths is very, very flat, in this case, 25 Cents flat. Together with its best third which is the familiar 400 cents of 12 equal, we get a system which tempers out the diesis, 128/125, and the amity comma, | However, its 23\39 fifth, 5.737 Cents sharp, is in much better tune than the Mavila fifth which like all Mavila fifths is very, very flat, in this case, 25 Cents flat. Together with its best third which is the familiar 400 cents of 12 equal, we get a system which tempers out the diesis, 128/125, and the amity comma, 1600000/1594323. We have two choices for a map for 7, but the sharp one works better with the 3 and 5, which adds 64/63 and 126/125 to the list. Tempering out both 128/125 and 64/63 makes 39EDO, in some few ways, allied to 12-ET in supporting augene temperament, and is in fact, an excellent choice for an augene tuning, but one difference is that 39 has a fine 11, and adding it to consideration we find that 39-EDO tempers out 99/98 and 121/120 also. This better choice for 39et is &lt;39 62 91 110 135|.<br /> | ||
A particular anecdote with this 39 divisions per 2/1 was made in the Teliochordon, in 1788 by Charles Clagget (Ireland, 1740? - 1820), a little extract <a class="wiki_link_ext" href="http://ml.oxfordjournals.org/content/76/2/291.extract.jpg" rel="nofollow">here</a>.<br /> | A particular anecdote with this 39 divisions per 2/1 was made in the Teliochordon, in 1788 by Charles Clagget (Ireland, 1740? - 1820), a little extract <a class="wiki_link_ext" href="http://ml.oxfordjournals.org/content/76/2/291.extract.jpg" rel="nofollow">here</a>.<br /> | ||
<br /> | <br /> | ||
Line 195: | Line 195: | ||
</th> | </th> | ||
<th>11-limit Ratio Assuming<br /> | <th>11-limit Ratio Assuming<br /> | ||
&lt | &lt;39 62 91 110 135| <a class="wiki_link" href="/Val">Val</a><br /> | ||
</th> | </th> | ||
</tr> | </tr> | ||
Line 267: | Line 267: | ||
<td>2v<br /> | <td>2v<br /> | ||
</td> | </td> | ||
<td | <td>123.0769<br /> | ||
</td> | </td> | ||
<td>44/41<br /> | <td>44/41<br /> | ||
</td> | </td> | ||
<td | <td>122.2555<br /> | ||
</td> | </td> | ||
<td>+0.8214<br /> | <td>+0.8214<br /> | ||
Line 283: | Line 283: | ||
<td>2<br /> | <td>2<br /> | ||
</td> | </td> | ||
<td | <td>153.8462<br /> | ||
</td> | </td> | ||
<td>35/32<br /> | <td>35/32<br /> | ||
</td> | </td> | ||
<td | <td>155.1396<br /> | ||
</td> | </td> | ||
<td>-1.2934<br /> | <td>-1.2934<br /> | ||
Line 299: | Line 299: | ||
<td>2‡<br /> | <td>2‡<br /> | ||
</td> | </td> | ||
<td | <td>184.6154<br /> | ||
</td> | </td> | ||
<td>10/9<br /> | <td>10/9<br /> | ||
</td> | </td> | ||
<td | <td>182.4037<br /> | ||
</td> | </td> | ||
<td>+2.2117<br /> | <td>+2.2117<br /> | ||
Line 315: | Line 315: | ||
<td>3b<br /> | <td>3b<br /> | ||
</td> | </td> | ||
<td | <td>215.3846<br /> | ||
</td> | </td> | ||
<td>17/15<br /> | <td>17/15<br /> | ||
</td> | </td> | ||
<td | <td>216.6867<br /> | ||
</td> | </td> | ||
<td>-1.3021<br /> | <td>-1.3021<br /> | ||
Line 331: | Line 331: | ||
<td>2#<br /> | <td>2#<br /> | ||
</td> | </td> | ||
<td | <td>246.1538<br /> | ||
</td> | </td> | ||
<td>15/13<br /> | <td>15/13<br /> | ||
</td> | </td> | ||
<td | <td>247.7411<br /> | ||
</td> | </td> | ||
<td>-1.5873<br /> | <td>-1.5873<br /> | ||
Line 347: | Line 347: | ||
<td>3v<br /> | <td>3v<br /> | ||
</td> | </td> | ||
<td | <td>276.9231<br /> | ||
</td> | </td> | ||
<td>27/23<br /> | <td>27/23<br /> | ||
</td> | </td> | ||
<td | <td>277.5907<br /> | ||
</td> | </td> | ||
<td>-0.6676<br /> | <td>-0.6676<br /> | ||
Line 363: | Line 363: | ||
<td>3<br /> | <td>3<br /> | ||
</td> | </td> | ||
<td | <td>307.6923<br /> | ||
</td> | </td> | ||
<td>43/36<br /> | <td>43/36<br /> | ||
</td> | </td> | ||
<td | <td>307.6077<br /> | ||
</td> | </td> | ||
<td>+0.0846<br /> | <td>+0.0846<br /> | ||
Line 379: | Line 379: | ||
<td>3‡<br /> | <td>3‡<br /> | ||
</td> | </td> | ||
<td | <td>338.4615<br /> | ||
</td> | </td> | ||
<td>17/14<br /> | <td>17/14<br /> | ||
</td> | </td> | ||
<td | <td>336.1295<br /> | ||
</td> | </td> | ||
<td>+2.332<br /> | <td>+2.332<br /> | ||
Line 395: | Line 395: | ||
<td>4b<br /> | <td>4b<br /> | ||
</td> | </td> | ||
<td | <td>369.2308<br /> | ||
</td> | </td> | ||
<td>26/21<br /> | <td>26/21<br /> | ||
</td> | </td> | ||
<td | <td>369.7468<br /> | ||
</td> | </td> | ||
<td>-0.516<br /> | <td>-0.516<br /> | ||
Line 415: | Line 415: | ||
<td>34/27<br /> | <td>34/27<br /> | ||
</td> | </td> | ||
<td | <td>399.0904<br /> | ||
</td> | </td> | ||
<td>+0.9096<br /> | <td>+0.9096<br /> | ||
Line 427: | Line 427: | ||
<td>4v (5b)<br /> | <td>4v (5b)<br /> | ||
</td> | </td> | ||
<td | <td>430.7692<br /> | ||
</td> | </td> | ||
<td>41/32<br /> | <td>41/32<br /> | ||
</td> | </td> | ||
<td | <td>429.0624<br /> | ||
</td> | </td> | ||
<td>+1.7068<br /> | <td>+1.7068<br /> | ||
Line 443: | Line 443: | ||
<td>4<br /> | <td>4<br /> | ||
</td> | </td> | ||
<td | <td>461.5385<br /> | ||
</td> | </td> | ||
<td>30/23<br /> | <td>30/23<br /> | ||
</td> | </td> | ||
<td | <td>459.9944<br /> | ||
</td> | </td> | ||
<td>+1.5441<br /> | <td>+1.5441<br /> | ||
Line 459: | Line 459: | ||
<td>4‡ (5v)<br /> | <td>4‡ (5v)<br /> | ||
</td> | </td> | ||
<td | <td>492.3077<br /> | ||
</td> | </td> | ||
<td>85/64<br /> | <td>85/64<br /> | ||
</td> | </td> | ||
<td | <td>491.2691<br /> | ||
</td> | </td> | ||
<td>+1.0386<br /> | <td>+1.0386<br /> | ||
Line 475: | Line 475: | ||
<td>5<br /> | <td>5<br /> | ||
</td> | </td> | ||
<td | <td>523.0769<br /> | ||
</td> | </td> | ||
<td>23/17<br /> | <td>23/17<br /> | ||
</td> | </td> | ||
<td | <td>523.3189<br /> | ||
</td> | </td> | ||
<td>-0.242<br /> | <td>-0.242<br /> | ||
Line 491: | Line 491: | ||
<td>5‡ (4#)<br /> | <td>5‡ (4#)<br /> | ||
</td> | </td> | ||
<td | <td>553.8462<br /> | ||
</td> | </td> | ||
<td>11/8<br /> | <td>11/8<br /> | ||
</td> | </td> | ||
<td | <td>551.3179<br /> | ||
</td> | </td> | ||
<td>+2.5283<br /> | <td>+2.5283<br /> | ||
Line 507: | Line 507: | ||
<td>6b<br /> | <td>6b<br /> | ||
</td> | </td> | ||
<td | <td>584.6154<br /> | ||
</td> | </td> | ||
<td>7/5<br /> | <td>7/5<br /> | ||
</td> | </td> | ||
<td | <td>582.5122<br /> | ||
</td> | </td> | ||
<td>+2.1032<br /> | <td>+2.1032<br /> | ||
Line 523: | Line 523: | ||
<td>5#<br /> | <td>5#<br /> | ||
</td> | </td> | ||
<td | <td>615.3846<br /> | ||
</td> | </td> | ||
<td>10/7<br /> | <td>10/7<br /> | ||
</td> | </td> | ||
<td | <td>617.4878<br /> | ||
</td> | </td> | ||
<td>-2.1032<br /> | <td>-2.1032<br /> | ||
Line 539: | Line 539: | ||
<td>6v<br /> | <td>6v<br /> | ||
</td> | </td> | ||
<td | <td>646.1538<br /> | ||
</td> | </td> | ||
<td>16/11<br /> | <td>16/11<br /> | ||
</td> | </td> | ||
<td | <td>648.6821<br /> | ||
</td> | </td> | ||
<td>-2.5283<br /> | <td>-2.5283<br /> | ||
Line 555: | Line 555: | ||
<td>6<br /> | <td>6<br /> | ||
</td> | </td> | ||
<td | <td>676.9231<br /> | ||
</td> | </td> | ||
<td>34/23<br /> | <td>34/23<br /> | ||
</td> | </td> | ||
<td | <td>676.6811<br /> | ||
</td> | </td> | ||
<td>+0.242<br /> | <td>+0.242<br /> | ||
Line 571: | Line 571: | ||
<td>6‡<br /> | <td>6‡<br /> | ||
</td> | </td> | ||
<td | <td>707.6923<br /> | ||
</td> | </td> | ||
<td>128/85<br /> | <td>128/85<br /> | ||
</td> | </td> | ||
<td | <td>708.7309<br /> | ||
</td> | </td> | ||
<td>-1.0386<br /> | <td>-1.0386<br /> | ||
Line 587: | Line 587: | ||
<td>7b<br /> | <td>7b<br /> | ||
</td> | </td> | ||
<td | <td>738.4615<br /> | ||
</td> | </td> | ||
<td>23/15<br /> | <td>23/15<br /> | ||
</td> | </td> | ||
<td | <td>740.0056<br /> | ||
</td> | </td> | ||
<td>-1.5441<br /> | <td>-1.5441<br /> | ||
Line 603: | Line 603: | ||
<td>6#<br /> | <td>6#<br /> | ||
</td> | </td> | ||
<td | <td>769.2308<br /> | ||
</td> | </td> | ||
<td>64/41<br /> | <td>64/41<br /> | ||
</td> | </td> | ||
<td | <td>770.9376<br /> | ||
</td> | </td> | ||
<td>-1.7068<br /> | <td>-1.7068<br /> | ||
Line 623: | Line 623: | ||
<td>27/17<br /> | <td>27/17<br /> | ||
</td> | </td> | ||
<td | <td>800.9096<br /> | ||
</td> | </td> | ||
<td>-0.9096<br /> | <td>-0.9096<br /> | ||
Line 635: | Line 635: | ||
<td>7<br /> | <td>7<br /> | ||
</td> | </td> | ||
<td | <td>830.7692<br /> | ||
</td> | </td> | ||
<td>21/13<br /> | <td>21/13<br /> | ||
</td> | </td> | ||
<td | <td>830.2532<br /> | ||
</td> | </td> | ||
<td>+0.516<br /> | <td>+0.516<br /> | ||
Line 651: | Line 651: | ||
<td>7‡<br /> | <td>7‡<br /> | ||
</td> | </td> | ||
<td | <td>861.5385<br /> | ||
</td> | </td> | ||
<td>28/17<br /> | <td>28/17<br /> | ||
</td> | </td> | ||
<td | <td>863.8705<br /> | ||
</td> | </td> | ||
<td>-2.332<br /> | <td>-2.332<br /> | ||
Line 667: | Line 667: | ||
<td>8b<br /> | <td>8b<br /> | ||
</td> | </td> | ||
<td | <td>892.3077<br /> | ||
</td> | </td> | ||
<td>72/43<br /> | <td>72/43<br /> | ||
</td> | </td> | ||
<td | <td>892.3923<br /> | ||
</td> | </td> | ||
<td>-0.0846<br /> | <td>-0.0846<br /> | ||
Line 683: | Line 683: | ||
<td>7#<br /> | <td>7#<br /> | ||
</td> | </td> | ||
<td | <td>923.0769<br /> | ||
</td> | </td> | ||
<td>46/27<br /> | <td>46/27<br /> | ||
</td> | </td> | ||
<td | <td>922.4093<br /> | ||
</td> | </td> | ||
<td>+0.6676<br /> | <td>+0.6676<br /> | ||
Line 699: | Line 699: | ||
<td>8v<br /> | <td>8v<br /> | ||
</td> | </td> | ||
<td | <td>953.8462<br /> | ||
</td> | </td> | ||
<td>26/15<br /> | <td>26/15<br /> | ||
</td> | </td> | ||
<td | <td>952.2589<br /> | ||
</td> | </td> | ||
<td>+1.5873<br /> | <td>+1.5873<br /> | ||
Line 715: | Line 715: | ||
<td>8<br /> | <td>8<br /> | ||
</td> | </td> | ||
<td | <td>984.6154<br /> | ||
</td> | </td> | ||
<td>30/17<br /> | <td>30/17<br /> | ||
</td> | </td> | ||
<td | <td>983.3133<br /> | ||
</td> | </td> | ||
<td>+1.3021<br /> | <td>+1.3021<br /> | ||
Line 851: | Line 851: | ||
<br /> | <br /> | ||
14 14 11 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/2L%201s">2L 1s</a><br /> | 14 14 11 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/2L%201s">2L 1s</a><br /> | ||
11 11 11 6 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/3L%201s">3L 1s</a><br /> | |||
10 10 10 9 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/3L%201s">3L 1s</a><br /> | |||
11 3 11 11 3 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%202s">3L 2s (Father pentatonic)</a><br /> | |||
5 12 5 5 12 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type 2L 3s (Mavila pentatonic)<br /> | 5 12 5 5 12 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type 2L 3s (Mavila pentatonic)<br /> | ||
7 7 9 7 9 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type 2L 3s (Superpythagorean pentatonic)<br /> | 7 7 9 7 9 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type 2L 3s (Superpythagorean pentatonic)<br /> | ||
8 8 8 8 7 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/4L%201s">4L 1s (Bug pentatonic)</a><br /> | 8 8 8 8 7 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/4L%201s">4L 1s (Bug pentatonic)</a><br /> | ||
10 3 10 3 10 3 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%203s">3L 3s (Augmented hexatonic)</a><br /> | |||
9 4 9 4 9 4 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%203s">3L 3s (Augmented hexatonic)</a><br /> | 9 4 9 4 9 4 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%203s">3L 3s (Augmented hexatonic)</a><br /> | ||
8 5 8 5 8 5 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%203s">3L 3s (Augmented hexatonic)</a><br /> | 8 5 8 5 8 5 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%203s">3L 3s (Augmented hexatonic)</a><br /> |