37edo: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 232649138 - Original comment: **
Wikispaces>hstraub
**Imported revision 238143977 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-05-28 23:12:47 UTC</tt>.<br>
: This revision was by author [[User:hstraub|hstraub]] and made on <tt>2011-06-22 07:17:42 UTC</tt>.<br>
: The original revision id was <tt>232649138</tt>.<br>
: The original revision id was <tt>238143977</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">37edo is the scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. Using its best (and sharp) fifth, it tempers out 250/243, making it a [[Porcupine family|porcupine temperament]] tuning. Using its alternative flat fifth, it tempers out 16875/16384, making it a negri tuning. It also tempers out 2187/2000, giving a temperament where three minor whole tones make up a fifth.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">37edo is the scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. Using its best (and sharp) fifth, it tempers out 250/243, making it a [[Porcupine family|porcupine temperament]] tuning. Using its alternative flat fifth, it tempers out 16875/16384, making it a negri tuning. It also tempers out 2187/2000, giving a temperament where three minor whole tones make up a fifth.


=Subgroups=
[[toc|flat]]
 
----
 
 
=Subgroups=  
37edo offers close approximations to [[OverToneSeries|harmonics]] 5, 7, 11, and 13:
37edo offers close approximations to [[OverToneSeries|harmonics]] 5, 7, 11, and 13:


Line 18: Line 23:
This means 37 is quite accurate on the 2.5.7.11 subgroup, where it shares the same tuning as 111et. In fact, on the larger [[k*N subgroups|3*37 subgroup]] 2.27.5.7.11.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas.
This means 37 is quite accurate on the 2.5.7.11 subgroup, where it shares the same tuning as 111et. In fact, on the larger [[k*N subgroups|3*37 subgroup]] 2.27.5.7.11.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas.


=The Two Fifths=
=The Two Fifths=  
The just [[perfect fifth]] of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:
The just [[perfect fifth]] of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:


Line 36: Line 41:
37edo has great potential as a xenharmonic system, which high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions.
37edo has great potential as a xenharmonic system, which high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions.


=Intervals=
=Intervals=  
|| degrees of 37edo || cents value ||
|| degrees of 37edo || cents value ||
|| 0 || 0.00 ||
|| 0 || 0.00 ||
Line 74: Line 79:
|| 34 || 1102.70 ||
|| 34 || 1102.70 ||
|| 35 || 1135.14 ||
|| 35 || 1135.14 ||
|| 36 || 1167.57 ||</pre></div>
|| 36 || 1167.57 ||
 
=Scales=
 
[[roulette6]]
[[roulette7]]
[[roulette13]]
[[roulette19]]</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;37edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;37edo is the scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. Using its best (and sharp) fifth, it tempers out 250/243, making it a &lt;a class="wiki_link" href="/Porcupine%20family"&gt;porcupine temperament&lt;/a&gt; tuning. Using its alternative flat fifth, it tempers out 16875/16384, making it a negri tuning. It also tempers out 2187/2000, giving a temperament where three minor whole tones make up a fifth.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;37edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;37edo is the scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. Using its best (and sharp) fifth, it tempers out 250/243, making it a &lt;a class="wiki_link" href="/Porcupine%20family"&gt;porcupine temperament&lt;/a&gt; tuning. Using its alternative flat fifth, it tempers out 16875/16384, making it a negri tuning. It also tempers out 2187/2000, giving a temperament where three minor whole tones make up a fifth.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextTocRule:8:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:8 --&gt;&lt;!-- ws:start:WikiTextTocRule:9: --&gt;&lt;a href="#Subgroups"&gt;Subgroups&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:9 --&gt;&lt;!-- ws:start:WikiTextTocRule:10: --&gt; | &lt;a href="#The Two Fifths"&gt;The Two Fifths&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:10 --&gt;&lt;!-- ws:start:WikiTextTocRule:11: --&gt; | &lt;a href="#Intervals"&gt;Intervals&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:11 --&gt;&lt;!-- ws:start:WikiTextTocRule:12: --&gt; | &lt;a href="#Scales"&gt;Scales&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt;
&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;br /&gt;
&lt;hr /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Subgroups"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Subgroups&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Subgroups"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Subgroups&lt;/h1&gt;
37edo offers close approximations to &lt;a class="wiki_link" href="/OverToneSeries"&gt;harmonics&lt;/a&gt; 5, 7, 11, and 13:&lt;br /&gt;
37edo offers close approximations to &lt;a class="wiki_link" href="/OverToneSeries"&gt;harmonics&lt;/a&gt; 5, 7, 11, and 13:&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
12\37 = 389.2 cents&lt;br /&gt;
12\37 = 389.2 cents&lt;br /&gt;
Line 89: Line 106:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="The Two Fifths"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;The Two Fifths&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="The Two Fifths"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;The Two Fifths&lt;/h1&gt;
The just &lt;a class="wiki_link" href="/perfect%20fifth"&gt;perfect fifth&lt;/a&gt; of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:&lt;br /&gt;
The just &lt;a class="wiki_link" href="/perfect%20fifth"&gt;perfect fifth&lt;/a&gt; of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
21\37 = 681.1 cents&lt;br /&gt;
21\37 = 681.1 cents&lt;br /&gt;
Line 107: Line 124:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Intervals&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Intervals&lt;/h1&gt;
 


&lt;table class="wiki_table"&gt;
&lt;table class="wiki_table"&gt;
Line 340: Line 357:
&lt;/table&gt;
&lt;/table&gt;


&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Scales&lt;/h1&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/roulette6"&gt;roulette6&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/roulette7"&gt;roulette7&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/roulette13"&gt;roulette13&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/roulette19"&gt;roulette19&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>