37edo: Difference between revisions

Wikispaces>Chartrekhan
**Imported revision 578143477 - Original comment: **
Wikispaces>hstraub
**Imported revision 584864853 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Chartrekhan|Chartrekhan]] and made on <tt>2016-03-23 01:50:11 UTC</tt>.<br>
: This revision was by author [[User:hstraub|hstraub]] and made on <tt>2016-06-06 07:21:39 UTC</tt>.<br>
: The original revision id was <tt>578143477</tt>.<br>
: The original revision id was <tt>584864853</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It is the 12th [[xenharmonic/prime numbers|prime]] edo, following [[xenharmonic/31edo|31edo]] and coming before [[xenharmonic/41edo|41edo]].
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">&lt;span style="display: block; text-align: right;"&gt;[[xenharmonie/37edo|Deutsch]]
&lt;/span&gt;
37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It is the 12th [[xenharmonic/prime numbers|prime]] edo, following [[xenharmonic/31edo|31edo]] and coming before [[xenharmonic/41edo|41edo]].


Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of [[xenharmonic/porcupine|porcupine]] temperament. (It is the optimal patent val for [[Porcupine family#Porcupinefish|porcupinefish]], which is about as accurate as "13-limit porcupine" will be.) Using its alternative flat fifth, it tempers out 16875/16384, making it a [[xenharmonic/negri|negri]] tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth ([[xenharmonic/gorgo|gorgo]]/[[xenharmonic/laconic|laconic]]).
Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of [[xenharmonic/porcupine|porcupine]] temperament. (It is the optimal patent val for [[Porcupine family#Porcupinefish|porcupinefish]], which is about as accurate as "13-limit porcupine" will be.) Using its alternative flat fifth, it tempers out 16875/16384, making it a [[xenharmonic/negri|negri]] tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth ([[xenharmonic/gorgo|gorgo]]/[[xenharmonic/laconic|laconic]]).
Line 140: Line 142:
[[http://tonalsoft.com/enc/number/37-edo/37edo.aspx|37edo at Tonalsoft]]</pre></div>
[[http://tonalsoft.com/enc/number/37-edo/37edo.aspx|37edo at Tonalsoft]]</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;37edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It is the 12th &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/prime%20numbers"&gt;prime&lt;/a&gt; edo, following &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo"&gt;31edo&lt;/a&gt; and coming before &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/41edo"&gt;41edo&lt;/a&gt;.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;37edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;span style="display: block; text-align: right;"&gt;&lt;a class="wiki_link" href="http://xenharmonie.wikispaces.com/37edo"&gt;Deutsch&lt;/a&gt;&lt;br /&gt;
&lt;/span&gt;&lt;br /&gt;
37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It is the 12th &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/prime%20numbers"&gt;prime&lt;/a&gt; edo, following &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo"&gt;31edo&lt;/a&gt; and coming before &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/41edo"&gt;41edo&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/porcupine"&gt;porcupine&lt;/a&gt; temperament. (It is the optimal patent val for &lt;a class="wiki_link" href="/Porcupine%20family#Porcupinefish"&gt;porcupinefish&lt;/a&gt;, which is about as accurate as &amp;quot;13-limit porcupine&amp;quot; will be.) Using its alternative flat fifth, it tempers out 16875/16384, making it a &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/negri"&gt;negri&lt;/a&gt; tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth (&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/gorgo"&gt;gorgo&lt;/a&gt;/&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/laconic"&gt;laconic&lt;/a&gt;).&lt;br /&gt;
Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/porcupine"&gt;porcupine&lt;/a&gt; temperament. (It is the optimal patent val for &lt;a class="wiki_link" href="/Porcupine%20family#Porcupinefish"&gt;porcupinefish&lt;/a&gt;, which is about as accurate as &amp;quot;13-limit porcupine&amp;quot; will be.) Using its alternative flat fifth, it tempers out 16875/16384, making it a &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/negri"&gt;negri&lt;/a&gt; tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth (&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/gorgo"&gt;gorgo&lt;/a&gt;/&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/laconic"&gt;laconic&lt;/a&gt;).&lt;br /&gt;