37edo: Difference between revisions
Wikispaces>Chartrekhan **Imported revision 578143477 - Original comment: ** |
Wikispaces>hstraub **Imported revision 584864853 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:hstraub|hstraub]] and made on <tt>2016-06-06 07:21:39 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>584864853</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It is the 12th [[xenharmonic/prime numbers|prime]] edo, following [[xenharmonic/31edo|31edo]] and coming before [[xenharmonic/41edo|41edo]]. | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html"><span style="display: block; text-align: right;">[[xenharmonie/37edo|Deutsch]] | ||
</span> | |||
37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It is the 12th [[xenharmonic/prime numbers|prime]] edo, following [[xenharmonic/31edo|31edo]] and coming before [[xenharmonic/41edo|41edo]]. | |||
Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of [[xenharmonic/porcupine|porcupine]] temperament. (It is the optimal patent val for [[Porcupine family#Porcupinefish|porcupinefish]], which is about as accurate as "13-limit porcupine" will be.) Using its alternative flat fifth, it tempers out 16875/16384, making it a [[xenharmonic/negri|negri]] tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth ([[xenharmonic/gorgo|gorgo]]/[[xenharmonic/laconic|laconic]]). | Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of [[xenharmonic/porcupine|porcupine]] temperament. (It is the optimal patent val for [[Porcupine family#Porcupinefish|porcupinefish]], which is about as accurate as "13-limit porcupine" will be.) Using its alternative flat fifth, it tempers out 16875/16384, making it a [[xenharmonic/negri|negri]] tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth ([[xenharmonic/gorgo|gorgo]]/[[xenharmonic/laconic|laconic]]). | ||
Line 140: | Line 142: | ||
[[http://tonalsoft.com/enc/number/37-edo/37edo.aspx|37edo at Tonalsoft]]</pre></div> | [[http://tonalsoft.com/enc/number/37-edo/37edo.aspx|37edo at Tonalsoft]]</pre></div> | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>37edo</title></head><body>37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It is the 12th <a class="wiki_link" href="http://xenharmonic.wikispaces.com/prime%20numbers">prime</a> edo, following <a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo">31edo</a> and coming before <a class="wiki_link" href="http://xenharmonic.wikispaces.com/41edo">41edo</a>.<br /> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>37edo</title></head><body><span style="display: block; text-align: right;"><a class="wiki_link" href="http://xenharmonie.wikispaces.com/37edo">Deutsch</a><br /> | ||
</span><br /> | |||
37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It is the 12th <a class="wiki_link" href="http://xenharmonic.wikispaces.com/prime%20numbers">prime</a> edo, following <a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo">31edo</a> and coming before <a class="wiki_link" href="http://xenharmonic.wikispaces.com/41edo">41edo</a>.<br /> | |||
<br /> | <br /> | ||
Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of <a class="wiki_link" href="http://xenharmonic.wikispaces.com/porcupine">porcupine</a> temperament. (It is the optimal patent val for <a class="wiki_link" href="/Porcupine%20family#Porcupinefish">porcupinefish</a>, which is about as accurate as &quot;13-limit porcupine&quot; will be.) Using its alternative flat fifth, it tempers out 16875/16384, making it a <a class="wiki_link" href="http://xenharmonic.wikispaces.com/negri">negri</a> tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth (<a class="wiki_link" href="http://xenharmonic.wikispaces.com/gorgo">gorgo</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/laconic">laconic</a>).<br /> | Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of <a class="wiki_link" href="http://xenharmonic.wikispaces.com/porcupine">porcupine</a> temperament. (It is the optimal patent val for <a class="wiki_link" href="/Porcupine%20family#Porcupinefish">porcupinefish</a>, which is about as accurate as &quot;13-limit porcupine&quot; will be.) Using its alternative flat fifth, it tempers out 16875/16384, making it a <a class="wiki_link" href="http://xenharmonic.wikispaces.com/negri">negri</a> tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth (<a class="wiki_link" href="http://xenharmonic.wikispaces.com/gorgo">gorgo</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/laconic">laconic</a>).<br /> |