Douglas Blumeyer's RTT How-To: Difference between revisions
Cmloegcmluin (talk | contribs) →Tempered lattice: fix typo |
Cmloegcmluin (talk | contribs) add units and variables table |
||
Line 1,158: | Line 1,158: | ||
|monzo | |monzo | ||
|} | |} | ||
The following table gives the names, units, dimensions, recommended single-letter variable names, and other helpful information about the objects that come together in RTT take us from intervals to tuned pitches in the temperament. | |||
Note that units are given here in a plain font, scalars are italic, vectors are bold, and matrices are capital italic, as per convention. | |||
{| class="wikitable" | |||
|+ '''Table 3.''' RTT units, dimensions, variables | |||
! colspan="3" |variable | |||
! rowspan="2" |name | |||
! colspan="3" |units | |||
! colspan="2" |dimensions | |||
! rowspan="2" |type | |||
! rowspan="2" |[[variance|<math>v</math>]] | |||
|- | |||
!unreduced | |||
!red. | |||
![[RTT library in Wolfram Language|Wolfram library]] | |||
!unreduced | |||
!red. | |||
!read as | |||
!unreduced | |||
!red. | |||
|- | |||
| | |||
|<math>\textbf{i}</math> | |||
|<code>i</code> | |||
|[[Prime count vector|interval]] | |||
| | |||
|<math>\text{p}</math> | |||
|primes | |||
| | |||
|<math>d\!×\!1</math> | |||
|vector | |||
|contra | |||
|- | |||
| | |||
|<math>M</math> | |||
|<code>m</code> | |||
|[[Mapping|(temperament) mapping]] | |||
| | |||
|<math>\large{{}^\text{g}{\mskip -5mu/\mskip -3mu}_\text{p}}</math> | |||
|generators per prime | |||
| | |||
|<math>r\!×\!d</math> | |||
|matrix | |||
|co | |||
|- | |||
|<math>M.\textbf{i}</math> | |||
|<math>M\textbf{i}</math> | |||
|<code>mi</code> | |||
|[[Tmonzos_and_tvals|mapped interval]] | |||
|<math>\large{}{}^\text{g}{\mskip -5mu/\mskip -3mu}_{\!\!\cancel{\text{p}}}·\!\normalsize{}\cancel{\text{p}}</math> | |||
|<math>\text{g}</math> | |||
|generators | |||
|<math>\small{}(r\!×\!\!\cancel{d}\!)(\!\cancel{d}\!\!×\!1)</math> | |||
|<math>r\!×\!1</math> | |||
|vector | |||
|contra | |||
|- | |||
| | |||
|<math>G</math> | |||
|<code>g</code> | |||
|[[Tenney-Euclidean_tuning#Computing_TE_tuning_using_pseudoinverse|generators (matrix)]] | |||
| | |||
|<math>\large{}{}^\text{p}{\mskip -5mu/\mskip -3mu}_\text{g}</math> | |||
|primes per generator | |||
| | |||
|<math>d\!×\!r</math> | |||
|matrix | |||
|contra | |||
|- | |||
|<math>G.M</math> | |||
|<math>P</math> | |||
|<code>p</code> | |||
|[[Projection matrix|(tuning) projection (matrix)]] | |||
|<math>\large{}{}^{\text{p}}{\mskip -5mu/\mskip -3mu}_{\!\!\cancel{\text{g}}}\!·\!{}^{\cancel{\text{g}}\!}{\mskip -5mu/\mskip -3mu}_{\text{p}}</math> | |||
|<math>\large{}{}^\text{p}{\mskip -5mu/\mskip -3mu}_\text{p}</math> | |||
|primes per prime | |||
|<math>\small{}(d\!×\!\!\cancel{r}\!)(\!\cancel{r}\!\!×\!d)</math> | |||
|<math>d\!×\!d</math> | |||
|matrix | |||
| | |||
|- | |||
|<math>G.M.\textbf{i}</math><br><math>P.\textbf{i}</math> | |||
|<math>P\textbf{i}</math> | |||
|<code>pi</code> | |||
|projected interval | |||
|<math>\large{}{}^{\text{p}}{\mskip -5mu/\mskip -3mu}_{\!\!\cancel{\text{g}}}\!·\!{}^{\cancel{\text{g}}\!}{\mskip -5mu/\mskip -3mu}_{\!\!\cancel{\text{p}}}\!·\!\normalsize{}\cancel{\text{p}}</math> | |||
|<math>\text{p}</math> | |||
|primes | |||
|<math>\small{}(d\!×\!\!\cancel{r}\!)(\!\cancel{r}\!\!×\!\!\cancel{d}\!)(\!\cancel{d}\!\!×\!1)</math> | |||
|<math>d\!×\!1</math> | |||
|vector | |||
|contra | |||
|- | |||
| | |||
|<math>\textbf{p}</math> | |||
|<code>ptm</code> | |||
|[[JIP|prime tuning map]] | |||
| | |||
|<math>\large{}{}^\text{oct}{\mskip -5mu/\mskip -3mu}_\text{p}</math> | |||
|octaves per prime | |||
| | |||
|<math>1\!×\!d</math> | |||
|vector | |||
|co | |||
|- | |||
|<math>\textbf{p}.G</math> | |||
|<math>\textbf{g}</math> | |||
|<code>gtm</code> | |||
|[[generator tuning map]] | |||
|<math>\large{}{}^\text{oct}{\mskip -5mu/\mskip -3mu}_{\!\!\cancel{\text{p}}}\!·\!{}^{\cancel{\text{p}}\!}{\mskip -5mu/\mskip -3mu}_\text{g}</math> | |||
|<math>\large{}{}^\text{oct}{\mskip -5mu/\mskip -3mu}_\text{g}</math> | |||
|octaves per generator | |||
|<math>\small{}(1\!×\!\!\cancel{d}\!)(\!\cancel{d}\!\!×\!r)</math> | |||
|<math>1\!×\!r</math> | |||
|vector | |||
|co | |||
|- | |||
|<math>\textbf{p}.G.M</math><br><math>\textbf{p}.P</math><br><math>\textbf{g}.M</math> | |||
|<math>\textbf{t}</math> | |||
|<code>tm</code> | |||
|[[tuning map|(temperament) tuning map]] | |||
|<math>\large{}{}^\text{oct}{\mskip -5mu/\mskip -3mu}_{\!\!\cancel{\text{p}}}\!·\!{}^{\cancel{\text{p}}\!}{\mskip -5mu/\mskip -3mu}_{\!\!\cancel{\text{g}}}\!·\!{}^{\cancel{\text{g}}\!}{\mskip -5mu/\mskip -3mu}_\text{p}</math> | |||
|<math>\large{}{}^\text{oct}{\mskip -5mu/\mskip -3mu}_\text{p}</math> | |||
|octaves per prime | |||
|<math>\small{}(1\!×\!\!\cancel{d}\!)(\!\cancel{d}\!\!×\!\!\cancel{r}\!)(\!\cancel{r}\!\!×\!d)</math> | |||
|<math>1\!×\!d</math> | |||
|vector | |||
|co | |||
|- | |||
|<math>\textbf{p}.G.M.\textbf{i}</math><br><math>\textbf{p}.P.\textbf{i}</math><br><math>\textbf{g}.M.\textbf{i}</math> | |||
|<math>\textbf{t}\textbf{i}</math> | |||
|<code>ti</code> | |||
|tuned interval | |||
|<math>\large{}{}^\text{oct}{\mskip -5mu/\mskip -3mu}_{\!\!\cancel{\text{p}}}\!·\!{}^{\cancel{\text{p}}\!}{\mskip -5mu/\mskip -3mu}_{\!\!\cancel{\text{g}}}\!·\!{}^{\cancel{\text{g}}\!}{\mskip -5mu/\mskip -3mu}_{\!\!\cancel{\text{p}}}\!·\!\normalsize{}\cancel{\text{p}}</math> | |||
|<math>\text{oct}</math> | |||
|octaves | |||
|<math>\small{}(1\!×\!\!\cancel{d}\!)(\!\cancel{d}\!\!×\!\!\cancel{r}\!)(\!\cancel{r}\!\!×\!\!\cancel{d}\!)(\!\cancel{d}\!\!×\!1)</math> | |||
|<math>1\!×\!1</math> | |||
|vector | |||
| | |||
|- | |||
| | |||
|<math>C</math> | |||
|<code>c</code> | |||
|[[comma basis]] | |||
| | |||
|<math>\text{p}</math> | |||
|primes | |||
| | |||
|<math>d\!×\!n</math> | |||
|matrix | |||
|contra | |||
|- | |||
| | |||
|<math>1200</math> | |||
| | |||
|octaves-to-cents conversion | |||
| | |||
|<math>\large{}{}^\text{c}{\mskip -5mu/\mskip -3mu}_\text{oct}</math> | |||
|cents per octave | |||
| | |||
|<math>1\!×\!1</math> | |||
|scalar | |||
| | |||
|- | |||
| | |||
|<math>T</math> | |||
|<code>t</code> | |||
|[[regular temperament|temperament]] | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |||
| | |||
|<math>d</math> | |||
|<code>d</code> | |||
|[[dimensionality]] | |||
| | |||
| | |||
| | |||
| | |||
|<math>1\!×\!1</math> | |||
|scalar | |||
| | |||
|- | |||
| | |||
|<math>r</math> | |||
|<code>r</code> | |||
|[[rank]] | |||
| | |||
| | |||
| | |||
| | |||
|<math>1\!×\!1</math> | |||
|scalar | |||
| | |||
|- | |||
| | |||
|<math>n</math> | |||
|<code>n</code> | |||
|[[nullity]] | |||
| | |||
| | |||
| | |||
| | |||
|<math>1\!×\!1</math> | |||
|scalar | |||
| | |||
|- | |||
| | |||
|<math>v</math> | |||
|<code>v</code> | |||
|[[variance]] | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |||
| | |||
|<math>\text{g}</math> | |||
| | |||
|generators | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|units | |||
| | |||
|- | |||
| | |||
|<math>\text{p}</math> | |||
| | |||
|primes | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|units | |||
| | |||
|- | |||
| | |||
|<math>\text{oct}</math> | |||
| | |||
|octaves | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|units | |||
| | |||
|- | |||
| | |||
|<math>\text{c}</math> | |||
| | |||
|cents | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|units | |||
| | |||
|} | |||
== Example == | |||
So, let's look at the example of ¼-comma meantone it is. Our four atomic objects are: | |||
* example interval, <math>\textbf{i}</math>: {{vector|-1 1 0}} | |||
* mapping, <math>M</math>: {{ket|{{map|1 1 0}} {{map|0 1 4}}}} | |||
* generators, <math>G</math>: {{bra|{{vector|1 0 0}} {{vector|0 0 ¼}}}} | |||
* prime tuning map, <math>\textbf{p}</math>: 1200{{map|log₂2 log₂3 log₂5}} = {{map|1200.000 1901.955 2786.314}} | |||
And so the various possible compositions of these objects are: | |||
* generator tuning map, <math>\textbf{p}.G = \textbf{g}</math>: {{map|1200.000 696.578}} | |||
* mapped interval, <math>M\textbf{i}</math>: [0 1} | |||
* tuning map, <math>\textbf{p}.G.M = \textbf{t}</math>: {{map|1200.000 1896.58 2786.31}} | |||
* projection matrix, <math>G.M = P</math>: [[1 1 0] [0 0 0] [0 ¼ 1]] | |||
* projected interval: <math>G.M.\textbf{i} = P\textbf{i}</math>: {{vector|0 0 ¼}} | |||
And the ultimate output is <math>\textbf{t}\textbf{i}</math>, which is 0.580. That multiplied by 1200 gives 696.578, the cents of ¼-comma meantone's fifth, which was the example interval we chose. | |||
= Outro = | |||
You’ve made it to the end. This is pretty much everything that I understand about RTT at this point (May 2021). This took me a little over a month of full-time funemployed exploration to learn and put together; at the onset, while having considered myself a xenharmonicist for 15 years, I only understood a few scattered things about RTT, such as ET maps and commas and the overlapping MOS concepts. I hope that equipped with my results here it shouldn’t take a newcomer nearly that much time to get going. And of course I hope to continue learning more myself and perhaps even contributing to the theory one day, since there’s still plenty of frontier here. | You’ve made it to the end. This is pretty much everything that I understand about RTT at this point (May 2021). This took me a little over a month of full-time funemployed exploration to learn and put together; at the onset, while having considered myself a xenharmonicist for 15 years, I only understood a few scattered things about RTT, such as ET maps and commas and the overlapping MOS concepts. I hope that equipped with my results here it shouldn’t take a newcomer nearly that much time to get going. And of course I hope to continue learning more myself and perhaps even contributing to the theory one day, since there’s still plenty of frontier here. |