Temperament addition: Difference between revisions
Cmloegcmluin (talk | contribs) |
Cmloegcmluin (talk | contribs) →Algebraic explanation: get rough version out |
||
Line 764: | Line 764: | ||
=== Algebraic explanation=== | === Algebraic explanation=== | ||
( | This explanation relies on comparing the results of the multivector and matrix approaches to temperament arithmetic, and showing algebraically how the matrix approach can only achieve the same answer as the multivector approach on the condition that it keeps all but one vector between the added matrices the same, that is, not only are the temperaments addable, but their L_dep appears explicitly in the added matrices. | ||
To compare results, we eventually get both approaches into a multivector form. With the multivector approach, we wedge the vector set first and then add the resultant multivectors to get a new multivector. With the matrix approach, we treat the vector set as a matrix and add first, then treat the resultant matrix as a vector set and wedge those vectors to get a new multivector. In the | |||
The diagrams below are organized into a 2×2 layout. The left part shows the multivector approach, and the right part shows the matrix approach. The top part shows how the results of two approaches match when the L_dep is successfully explicit, and the bottom part shows how the results fail to match when it is not. | |||
This first diagram demonstrates this situation for a d=3, g=2 case. | |||
{| class="wikitable" | |||
|+ | |||
! | |||
! | |||
! | |||
! colspan="11" | | |||
! | |||
! colspan="11" | | |||
! | |||
|- | |||
! | |||
! | |||
! | |||
| colspan="11" rowspan="1" |multivector approach | |||
! | |||
| colspan="11" rowspan="1" |matrix approach | |||
! | |||
|- | |||
! | |||
! | |||
! | |||
! colspan="11" | | |||
! | |||
! colspan="11" | | |||
! | |||
|- | |||
! rowspan="5" | | |||
| colspan="1" rowspan="5" |explicit L_dep | |||
⟨[a b c⟩] | |||
! rowspan="5" | | |||
|a | |||
|b | |||
|c | |||
| rowspan="2" | | |||
|a | |||
|b | |||
|c | |||
| rowspan="2" | | |||
| colspan="3" rowspan="2" | | |||
! rowspan="5" | | |||
|a | |||
|b | |||
|c | |||
| colspan="1" rowspan="2" |+ | |||
|a | |||
|b | |||
|c | |||
| colspan="1" rowspan="2" |= | |||
|2a | |||
|2b | |||
|2c | |||
! rowspan="5" | | |||
|- | |||
|d | |||
|e | |||
|f | |||
|g | |||
|h | |||
|i | |||
|d | |||
|e | |||
|f | |||
|g | |||
|h | |||
|i | |||
|d+g | |||
|e+h | |||
|f+i | |||
|- | |||
| colspan="3" rowspan="1" |∧ | |||
| | |||
| colspan="3" rowspan="1" |∧ | |||
| | |||
| colspan="3" | | |||
| colspan="3" | | |||
| | |||
| colspan="3" | | |||
| | |||
| colspan="3" rowspan="1" |∧ | |||
|- | |||
|bf-ce | |||
|af-cd | |||
|ae-bd | |||
| + | |||
|bi-ch | |||
|ai-cg | |||
|ah-bg | |||
|= | |||
|bf-ce + bi-ch | |||
|af-cd + ai-cg | |||
|ae-bd + ah-bg | |||
| colspan="3" rowspan="2" | | |||
| rowspan="2" | | |||
| colspan="3" rowspan="2" | | |||
| rowspan="2" | | |||
|2b(f+i) - 2c(e+h) | |||
|2a(f+i) - 2c(d+g) | |||
|2a(e+h) - 2b(d+g) | |||
|- | |||
| colspan="3" | | |||
| | |||
| colspan="3" | | |||
| | |||
|b(f+i) - c(e+h) | |||
|a(f+i) - c(d+g) | |||
|a(e+h) - b(d+g) | |||
|b(f+i) - c(e+h) | |||
|a(f+i) - c(d+g) | |||
|a(e+h) - b(d+g) | |||
|- | |||
! | |||
! | |||
! | |||
! colspan="11" | | |||
! | |||
! colspan="11" | | |||
! | |||
|- | |||
! rowspan="5" | | |||
| rowspan="5" |hidden L_dep | |||
! rowspan="5" | | |||
|a | |||
|b | |||
|c | |||
| rowspan="2" | | |||
|j | |||
|k | |||
|l | |||
| | |||
| colspan="3" rowspan="2" | | |||
! rowspan="5" | | |||
|a | |||
|b | |||
|c | |||
| colspan="1" rowspan="2" |+ | |||
|j | |||
|k | |||
|l | |||
| colspan="1" rowspan="2" |= | |||
|a+j | |||
|b+k | |||
|c+l | |||
! rowspan="5" | | |||
|- | |||
|d | |||
|e | |||
|f | |||
|g | |||
|h | |||
|i | |||
| | |||
|d | |||
|e | |||
|f | |||
|g | |||
|h | |||
|i | |||
|d+g | |||
|e+h | |||
|f+i | |||
|- | |||
| colspan="3" rowspan="1" |∧ | |||
| | |||
| colspan="3" rowspan="1" |∧ | |||
| | |||
| colspan="3" | | |||
| colspan="3" | | |||
| | |||
| colspan="3" | | |||
| | |||
| colspan="3" rowspan="1" |∧ | |||
|- | |||
|bf-ce | |||
|af-cd | |||
|ae-bd | |||
| + | |||
|ki-lh | |||
|ji-lg | |||
|jh-kg | |||
|= | |||
|bf - ce + ki - lh | |||
|af - cd + ji - lg | |||
|ae - bd + jh - kg | |||
| colspan="3" rowspan="2" | | |||
| rowspan="2" | | |||
| colspan="3" rowspan="2" | | |||
| rowspan="2" | | |||
|(b+k)(f+i) - (c+l)(e+h) | |||
|(a+j)(f+i) - (c+l)(d+g) | |||
|(a+j)(e+h) - (b+k)(d+g) | |||
|- | |||
| colspan="3" | | |||
| | |||
| colspan="3" | | |||
| | |||
|bf - ce + ki - lh | |||
|af - cd + ji - lg | |||
|ae - bd + jh - kg | |||
|bf + bi + kf + ki - ce - ch - le - lh | |||
|af + ai + jf + ji - cd - cg - ld - lg | |||
|ae + ah + je + jh - bd - bg - kd - kg | |||
|- | |||
! | |||
! | |||
! | |||
! colspan="11" | | |||
! | |||
! colspan="11" | | |||
! | |||
|} | |||
This second diagram demonstrates this situation for a d=5, g=3 case. | |||
{| class="wikitable" | |||
|+ | |||
! | |||
! colspan="2" | | |||
! | |||
! colspan="32" | | |||
! | |||
! colspan="22" | | |||
! | |||
|- | |||
! | |||
! colspan="2" | | |||
! | |||
| colspan="32" rowspan="1" |multivector approach | |||
! | |||
| colspan="22" rowspan="1" |matrix approach | |||
! | |||
|- | |||
! | |||
! colspan="2" | | |||
! | |||
! colspan="32" | | |||
! | |||
! colspan="22" | | |||
! | |||
|- | |||
! rowspan="7" | | |||
| colspan="1" rowspan="7" |explicit L_dep | |||
⟨[a b c d e⟩ | |||
[f g h i j⟩] | |||
|r₁ | |||
! rowspan="7" | | |||
| colspan="2" rowspan="1" |a | |||
| colspan="2" rowspan="1" |b | |||
| colspan="2" rowspan="1" |c | |||
| colspan="2" rowspan="1" |d | |||
| colspan="2" rowspan="1" |e | |||
| rowspan="3" | | |||
| colspan="2" rowspan="1" |a | |||
| colspan="2" rowspan="1" |b | |||
| colspan="2" rowspan="1" |c | |||
| colspan="2" rowspan="1" |d | |||
| colspan="2" rowspan="1" |e | |||
| rowspan="3" | | |||
| colspan="10" rowspan="3" | | |||
! rowspan="7" | | |||
|a | |||
|b | |||
|c | |||
|d | |||
|e | |||
| colspan="1" rowspan="3" |+ | |||
|a | |||
|b | |||
|c | |||
|d | |||
|e | |||
| colspan="1" rowspan="3" |= | |||
| colspan="2" rowspan="1" |2a | |||
| colspan="2" rowspan="1" |2b | |||
| colspan="2" rowspan="1" |2c | |||
| colspan="2" rowspan="1" |2d | |||
| colspan="2" rowspan="1" |2e | |||
! rowspan="7" | | |||
|- | |||
|r₂ | |||
| colspan="2" rowspan="1" |f | |||
| colspan="2" rowspan="1" |g | |||
| colspan="2" rowspan="1" |h | |||
| colspan="2" rowspan="1" |i | |||
| colspan="2" rowspan="1" |j | |||
| colspan="2" rowspan="1" |f | |||
| colspan="2" rowspan="1" |g | |||
| colspan="2" rowspan="1" |h | |||
| colspan="2" rowspan="1" |i | |||
| colspan="2" rowspan="1" |j | |||
|f | |||
|g | |||
|h | |||
|i | |||
|j | |||
|f | |||
|g | |||
|h | |||
|i | |||
|j | |||
| colspan="2" rowspan="1" |2f | |||
| colspan="2" rowspan="1" |2g | |||
| colspan="2" rowspan="1" |2h | |||
| colspan="2" rowspan="1" |2i | |||
| colspan="2" rowspan="1" |2j | |||
|- | |||
|r₃ | |||
| colspan="2" rowspan="1" |k | |||
| colspan="2" rowspan="1" |l | |||
| colspan="2" rowspan="1" |m | |||
| colspan="2" rowspan="1" |n | |||
| colspan="2" rowspan="1" |o | |||
| colspan="2" rowspan="1" |p | |||
| colspan="2" rowspan="1" |q | |||
| colspan="2" rowspan="1" |r | |||
| colspan="2" rowspan="1" |s | |||
| colspan="2" rowspan="1" |t | |||
|k | |||
|l | |||
|m | |||
|n | |||
|o | |||
|p | |||
|q | |||
|r | |||
|s | |||
|t | |||
| colspan="2" rowspan="1" |k+p | |||
| colspan="2" rowspan="1" |l+q | |||
| colspan="2" rowspan="1" |m+r | |||
| colspan="2" rowspan="1" |n+s | |||
| colspan="2" rowspan="1" |o+t | |||
|- | |||
| | |||
| colspan="10" rowspan="1" |∧ | |||
| | |||
| colspan="10" rowspan="1" |∧ | |||
| | |||
| colspan="10" | | |||
| colspan="5" | | |||
| | |||
| colspan="5" | | |||
| | |||
| colspan="10" rowspan="1" |∧ | |||
|- | |||
|r₁∧r₂ | |||
| rowspan="2" |ag-bf | |||
| rowspan="2" |ah-cf | |||
| rowspan="2" |ai-df | |||
| rowspan="2" |aj-ef | |||
| rowspan="2" |bh-cg | |||
| rowspan="2" |bi-dg | |||
| rowspan="2" |bj-eg | |||
| rowspan="2" |ci-dh | |||
| rowspan="2" |cj-eh | |||
| rowspan="2" |dj-ei | |||
| rowspan="2" | | |||
| rowspan="2" |ag-bf | |||
| rowspan="2" |ah-cf | |||
| rowspan="2" |ai-df | |||
| rowspan="2" |aj-ef | |||
| rowspan="2" |bh-cg | |||
| rowspan="2" |bi-dg | |||
| rowspan="2" |bj-eg | |||
| rowspan="2" |ci-dh | |||
| rowspan="2" |cj-eh | |||
| rowspan="2" |dj-ei | |||
| rowspan="2" | | |||
| colspan="10" rowspan="2" | | |||
| colspan="5" rowspan="3" | | |||
| rowspan="3" | | |||
| colspan="5" rowspan="3" | | |||
| rowspan="3" | | |||
|4ag-4bf | |||
|4ah-4cf | |||
|4ai-4df | |||
|4aj-4ef | |||
|4bh-4cg | |||
|4bi-4dg | |||
|4bj-4eg | |||
|4ci-4dh | |||
|4cj-4eh | |||
|4dj-4ei | |||
|- | |||
|simplify(r₁∧r₂) if necessary | |||
|ag-bf | |||
|ah-cf | |||
|ai-df | |||
|aj-ef | |||
|bh-cg | |||
|bi-dg | |||
|bj-eg | |||
|ci-dh | |||
|cj-eh | |||
|dj-ei | |||
|- | |||
|(r₁∧r₂)∧r₃ | |||
|k(bh-cg) | |||
- | |||
l(ah-cf) | |||
+ | |||
m(ag-bf) | |||
|k(bi-dg) | |||
- | |||
l(ai-df) | |||
+ | |||
n(ag-bf) | |||
|k(bj-eg) | |||
- | |||
l(aj-ef) | |||
+ | |||
o(ag-bf) | |||
|k(ci-dh) | |||
- | |||
m(ai-df) | |||
+ | |||
n(ah-cf) | |||
|k(cj-eh) | |||
- | |||
m(aj-ef) | |||
+ | |||
o(ah-cf) | |||
|k(dj-ei) | |||
- | |||
n(aj-ef) | |||
+ | |||
o(ai-df) | |||
|l(ci-dh) | |||
- | |||
m(bi-dg) | |||
+ | |||
n(bh-cg) | |||
|l(cj-eh) | |||
- | |||
m(bj-eg) | |||
+ | |||
o(bh-cg) | |||
|l(dj-ei) | |||
- | |||
n(bj-eg) | |||
+ | |||
o(bi-dg) | |||
|m(dj-ei) | |||
- | |||
n(cj-eh) | |||
+ | |||
o(ci-dh) | |||
| + | |||
|p(bh-cg)-q(ah-cf)+r(ag-bf) | |||
|p(bi-dg)-q(ai-df)+s(ag-bf) | |||
|p(bj-eg)-q(aj-ef)+t(ag-bf) | |||
|p(ci-dh)-r(ai-df)+s(ah-cf) | |||
|p(cj-eh)-r(aj-ef)+t(ah-cf) | |||
|p(dj-ei)-s(aj-ef)+t(ai-df) | |||
|q(ci-dh)-r(bi-dg)+s(bh-cg) | |||
|q(cj-eh)-r(bj-eg)+t(bh-cg) | |||
|q(dj-ei)-s(bj-eg)+t(bi-dg) | |||
|r(dj-ei)-s(cj-eh)+t(ci-dh) | |||
|= | |||
|(k+p)(bh-cg)-(l+q)(ah-cf)+(m+r)(ag-bf) | |||
|(k+p)(bi-dg)-(l+q)(ai-df)+(n+s)(ag-bf) | |||
|(k+p)(bj-eg)-(l+q)(aj-ef)+(o+t)(ag-bf) | |||
|(k+p)(ci-dh)-(m+r)(ai-df)+(n+s)(ah-cf) | |||
|(k+p)(cj-eh)-(m+r)(aj-ef)+(o+t)(ah-cf) | |||
|(k+p)(dj-ei)-(n+s)(aj-ef)+(o+t)(ai-df) | |||
|(l+q)(ci-dh)-(m+r)(bi-dg)+(n+s)(bh-cg) | |||
|(l+q)(cj-eh)-(m+r)(bj-eg)+(o+t)(bh-cg) | |||
|(l+q)(dj-ei)-(n+s)(bj-eg)+(o+t)(bi-dg) | |||
|(m+r)(dj-ei)-(n+s)(cj-eh)+(o+t)(ci-dh) | |||
|(k+p)(bh-cg)-(l+q)(ah-cf)+(m+r)(ag-bf) | |||
|(k+p)(bi-dg)-(l+q)(ai-df)+(n+s)(ag-bf) | |||
|(k+p)(bj-eg)-(l+q)(aj-ef)+(o+t)(ag-bf) | |||
|(k+p)(ci-dh)-(m+r)(ai-df)+(n+s)(ah-cf) | |||
|(k+p)(cj-eh)-(m+r)(aj-ef)+(o+t)(ah-cf) | |||
|(k+p)(dj-ei)-(n+s)(aj-ef)+(o+t)(ai-df) | |||
|(l+q)(ci-dh)-(m+r)(bi-dg)+(n+s)(bh-cg) | |||
|(l+q)(cj-eh)-(m+r)(bj-eg)+(o+t)(bh-cg) | |||
|(l+q)(dj-ei)-(n+s)(bj-eg)+(o+t)(bi-dg) | |||
|(m+r)(dj-ei)-(n+s)(cj-eh)+(o+t)(ci-dh) | |||
|- | |||
! | |||
! | |||
! | |||
! | |||
! colspan="32" | | |||
! | |||
! colspan="22" | | |||
! | |||
|- | |||
! rowspan="7" | | |||
| rowspan="7" |hidden L_dep | |||
|r₁ | |||
! rowspan="7" | | |||
| colspan="2" rowspan="1" |a | |||
| colspan="2" rowspan="1" |b | |||
| colspan="2" rowspan="1" |c | |||
| colspan="2" rowspan="1" |d | |||
| colspan="2" rowspan="1" |e | |||
| rowspan="3" | | |||
| colspan="2" rowspan="1" |a | |||
| colspan="2" rowspan="1" |b | |||
| colspan="2" rowspan="1" |c | |||
| colspan="2" rowspan="1" |d | |||
| colspan="2" rowspan="1" |e | |||
| rowspan="3" | | |||
| colspan="10" rowspan="3" | | |||
! rowspan="7" | | |||
|a | |||
|b | |||
|c | |||
|d | |||
|e | |||
| colspan="1" rowspan="3" |+ | |||
|a | |||
|b | |||
|c | |||
|d | |||
|e | |||
| colspan="1" rowspan="3" |= | |||
| colspan="2" rowspan="1" |2a | |||
| colspan="2" rowspan="1" |2b | |||
| colspan="2" rowspan="1" |2c | |||
| colspan="2" rowspan="1" |2d | |||
| colspan="2" rowspan="1" |2e | |||
! rowspan="7" | | |||
|- | |||
|r₂ | |||
| colspan="2" rowspan="1" |f | |||
| colspan="2" rowspan="1" |g | |||
| colspan="2" rowspan="1" |h | |||
| colspan="2" rowspan="1" |i | |||
| colspan="2" rowspan="1" |j | |||
| colspan="2" rowspan="1" |u | |||
| colspan="2" rowspan="1" |v | |||
| colspan="2" rowspan="1" |w | |||
| colspan="2" rowspan="1" |x | |||
| colspan="2" rowspan="1" |y | |||
|f | |||
|g | |||
|h | |||
|i | |||
|j | |||
|u | |||
|v | |||
|w | |||
|x | |||
|y | |||
| colspan="2" rowspan="1" |f+u | |||
| colspan="2" rowspan="1" |g+v | |||
| colspan="2" rowspan="1" |w+h | |||
| colspan="2" rowspan="1" |i+x | |||
| colspan="2" rowspan="1" |j+y | |||
|- | |||
|r₃ | |||
| colspan="2" rowspan="1" |k | |||
| colspan="2" rowspan="1" |l | |||
| colspan="2" rowspan="1" |m | |||
| colspan="2" rowspan="1" |n | |||
| colspan="2" rowspan="1" |o | |||
| colspan="2" rowspan="1" |p | |||
| colspan="2" rowspan="1" |q | |||
| colspan="2" rowspan="1" |r | |||
| colspan="2" rowspan="1" |s | |||
| colspan="2" rowspan="1" |t | |||
|k | |||
|l | |||
|m | |||
|n | |||
|o | |||
|p | |||
|q | |||
|r | |||
|s | |||
|t | |||
| colspan="2" rowspan="1" |k+p | |||
| colspan="2" rowspan="1" |l+q | |||
| colspan="2" rowspan="1" |m+r | |||
| colspan="2" rowspan="1" |n+s | |||
| colspan="2" rowspan="1" |o+t | |||
|- | |||
| | |||
| colspan="10" rowspan="1" |∧ | |||
| | |||
| colspan="10" rowspan="1" |∧ | |||
| | |||
| colspan="10" | | |||
| colspan="5" | | |||
| | |||
| colspan="5" | | |||
| | |||
| colspan="10" rowspan="1" |∧ | |||
|- | |||
|r₁∧r₂ | |||
| rowspan="2" |ag-bf | |||
| rowspan="2" |ah-cf | |||
| rowspan="2" |ai-df | |||
| rowspan="2" |aj-ef | |||
| rowspan="2" |bh-cg | |||
| rowspan="2" |bi-dg | |||
| rowspan="2" |bj-eg | |||
| rowspan="2" |ci-dh | |||
| rowspan="2" |cj-eh | |||
| rowspan="2" |dj-ei | |||
| rowspan="2" | | |||
| rowspan="2" |av-bu | |||
| rowspan="2" |aw-cu | |||
| rowspan="2" |ax-du | |||
| rowspan="2" |ay-eu | |||
| rowspan="2" |bw-cv | |||
| rowspan="2" |bx-dv | |||
| rowspan="2" |by-ev | |||
| rowspan="2" |cx-dw | |||
| rowspan="2" |cy-ew | |||
| rowspan="2" |dy-ex | |||
| rowspan="2" | | |||
| colspan="10" rowspan="2" | | |||
| colspan="5" rowspan="3" | | |||
| rowspan="3" | | |||
| colspan="5" rowspan="3" | | |||
| rowspan="3" | | |||
|2a(g+v) - 2b(f+u) | |||
|2a(w+h) | |||
- | |||
2c(f+u) | |||
|2a(i+x) | |||
- | |||
2d(f+u) | |||
|2a(j+y) | |||
- | |||
2e(f+u) | |||
|2b(w+h) | |||
- | |||
2c(g+v) | |||
|2b(i+x) | |||
- | |||
2d(g+v) | |||
|2b(j+y) | |||
- | |||
2e(g+v) | |||
|2c(i+x) | |||
- | |||
2d(w+h) | |||
|2c(j+y) | |||
- | |||
2e(w+h) | |||
|2d(j+y) | |||
- | |||
2e(i+x) | |||
|- | |||
|simplify(r₁∧r₂) if necessary | |||
|a(g+v)-b(f+u) | |||
|a(w+h)- c(f+u) | |||
|a(i+x)-d(f+u) | |||
|a(j+y)-e(f+u) | |||
|b(w+h)-c(g+v) | |||
|b(i+x)-d(g+v) | |||
|b(j+y)-e(g+v) | |||
|c(i+x)-d(w+h) | |||
|c(j+y)-e(w+h) | |||
|d(j+y)-e(i+x) | |||
|- | |||
|(r₁∧r₂)∧r₃ | |||
|k(bh-cg) | |||
- | |||
l(ah-cf) | |||
+ | |||
m(ag-bf) | |||
|k(bi-dg) | |||
- | |||
l(ai-df) | |||
+ | |||
n(ag-bf) | |||
|k(bj-eg) | |||
- | |||
l(aj-ef) | |||
+ | |||
o(ag-bf) | |||
|k(ci-dh) | |||
- | |||
m(ai-df) | |||
+ | |||
n(ah-cf) | |||
|k(cj-eh) | |||
- | |||
m(aj-ef) | |||
+ | |||
o(ah-cf) | |||
|k(dj-ei) | |||
- | |||
n(aj-ef) | |||
+ | |||
o(ai-df) | |||
|l(ci-dh) | |||
- | |||
m(bi-dg) | |||
+ | |||
n(bh-cg) | |||
|l(cj-eh) | |||
- | |||
m(bj-eg) | |||
+ | |||
o(bh-cg) | |||
|l(dj-ei) | |||
- | |||
n(bj-eg) | |||
+ | |||
o(bi-dg) | |||
|m(dj-ei) | |||
- | |||
n(cj-eh) | |||
+ | |||
o(ci-dh) | |||
|<nowiki>+</nowiki> | |||
|p(bw-cv) | |||
- | |||
q(aw-cu) | |||
+ | |||
r(av-bu) | |||
|p(bx-dv) | |||
- | |||
q(ax-du) | |||
+ | |||
s(av-bu) | |||
|p(by-ev) | |||
- | |||
q(ay-eu) | |||
+ | |||
t(av-bu) | |||
|p(cx-dw) | |||
- | |||
r(ax-du) | |||
+ | |||
s(aw-cu) | |||
|p(cy-ew) | |||
- | |||
r(ay-eu) | |||
+ | |||
t(aw-cu) | |||
|p(dy-ex) | |||
- | |||
s(ay-eu) | |||
+ | |||
t(ax-du) | |||
|q(cx-dw) - | |||
r(bx-dv) | |||
+ | |||
s(bw-cv) | |||
|q(cy-ew) | |||
- | |||
r(by-ev) + | |||
t(bw-cv) | |||
|q(dy-ex) - | |||
s(by-ev) | |||
+ | |||
t(bw-cv) | |||
|r(dy-ex) - | |||
s(cy-ew) | |||
+ | |||
t(cx-dw) | |||
|= | |||
|k(bh-cg) | |||
- | |||
l(ah-cf) | |||
+ | |||
m(ag-bf) | |||
+ | |||
p(bw-cv) | |||
- | |||
q(aw-cu) | |||
+ | |||
r(av-bu) | |||
|k(bi-dg) | |||
- | |||
l(ai-df) | |||
+ | |||
n(ag-bf) | |||
+ | |||
p(bx-dv) | |||
- | |||
q(ax-du) | |||
+ | |||
s(av-bu) | |||
|k(bj-eg) | |||
- | |||
l(aj-ef) | |||
+ | |||
o(ag-bf) | |||
+ | |||
p(by-ev) | |||
- | |||
q(ay-eu) | |||
+ | |||
t(av-bu) | |||
|k(ci-dh) | |||
- | |||
m(ai-df) | |||
+ | |||
n(ah-cf) | |||
+ | |||
p(cx-dw) | |||
- | |||
r(ax-du) | |||
+ | |||
s(aw-cu) | |||
|k(cj-eh) | |||
- | |||
m(aj-ef) | |||
+ | |||
o(ah-cf) | |||
+ | |||
p(cy-ew) | |||
- | |||
r(ay-eu) | |||
+ | |||
t(aw-cu) | |||
|k(dj-ei) | |||
- | |||
n(aj-ef) | |||
+ | |||
o(ai-df) | |||
+ | |||
p(dy-ex) | |||
- | |||
s(ay-eu) | |||
+ | |||
t(ax-du) | |||
|l(ci-dh) | |||
- | |||
m(bi-dg) | |||
+ | |||
n(bh-cg) | |||
+ | |||
q(cx-dw) | |||
- | |||
r(bx-dv) | |||
+ | |||
s(bw-cv) | |||
|l(cj-eh) | |||
- | |||
m(bj-eg) | |||
+ | |||
o(bh-cg) | |||
+ | |||
q(cy-ew) | |||
- | |||
r(by-ev) | |||
+ | |||
t(bw-cv) | |||
|l(dj-ei) | |||
- | |||
n(bj-eg) | |||
+ | |||
o(bi-dg) | |||
+ | |||
q(dy-ex) | |||
- | |||
s(by-ev) | |||
+ | |||
t(bw-cv) | |||
|m(dj-ei) | |||
- | |||
n(cj-eh) | |||
+ | |||
o(ci-dh) | |||
+ | |||
r(dy-ex) | |||
- | |||
s(cy-ew) | |||
+ | |||
t(cx-dw) | |||
|(k+p)(b(w+h)-c(g+v)) - (l+q)(a(w+h)- c(f+u)) + (m+r)(a(g+v)-b(f+u)) | |||
|(k+p)(b(i+x)-d(g+v)) - (l+q)(a(i+x)-d(f+u)) + (n+s)(a(g+v)-b(f+u)) | |||
|(k+p)(b(j+y)-e(g+v)) - (l+q)(a(j+y)-e(f+u)) + (o+t)(a(g+v)-b(f+u)) | |||
|(k+p)(c(i+x)-d(w+h)) - (m+r)(a(i+x)-d(f+u)) + (n+s)(a(w+h)- c(f+u)) | |||
|(k+p)(c(j+y)-e(w+h)) - (m+r)(a(j+y)-e(f+u)) + (o+t)(a(w+h)- c(f+u)) | |||
|(k+p)(d(j+y)-e(i+x)) - (n+s)(a(j+y)-e(f+u)) + (o+t)(a(i+x)-d(f+u)) | |||
|(l+q)(c(i+x)-d(w+h)) - (m+r)(b(i+x)-d(g+v)) + (n+s)(b(w+h)-c(g+v)) | |||
|(l+q)(c(j+y)-e(w+h)) - (m+r)(b(j+y)-e(g+v)) + (o+t)(b(w+h)-c(g+v)) | |||
|(l+q)(d(j+y)-e(i+x)) - (n+s)(b(j+y)-e(g+v)) + (o+t)(b(i+x)-d(g+v)) | |||
|(m+r)(d(j+y)-e(i+x)) - (n+s)(c(j+y)-e(w+h)) + (o+t)(c(i+x)-d(w+h)) | |||
|- | |||
! | |||
! colspan="2" | | |||
! | |||
! colspan="32" | | |||
! | |||
! colspan="22" | | |||
! | |||
|} | |||
These two examples are by no means a proof, but meditation on the patterns in the variables is at least fairly convincing. | |||
===Sintel's proof of the <span style="color: #B6321C;">linear-independence</span> conjecture=== | ===Sintel's proof of the <span style="color: #B6321C;">linear-independence</span> conjecture=== |