User:Sintel/CTE tuning: Difference between revisions
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
& \underset{g}{\text{minimize}} && \left\| g\mathrm{ | & \underset{g}{\text{minimize}} && \left\| g\mathrm{AW} - j\mathrm{W} \right\|^2 \\ | ||
& \text{subject to} && | & \text{subject to} && g\mathrm{AB} = j\mathrm{B} \\ | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
where ''g'' is the generator list, V = AW the Tenney-weighted temperament mapping, ''j'' | where ''g'' is the generator list, V = AW the Tenney-weighted temperament mapping, ''j'' is the [[JIP]], and <math>\mathrm{B}</math> is a matrix obtained by stacking the monzos that we need to be just. This problem can be solved using the method of lagrange multipliers: | ||
<math> | |||
\begin{bmatrix} | |||
\mathrm{AW^2A}^{\mathsf T} & \mathrm{AB} \\ | |||
\mathrm{(AB)}^{\mathsf T} & 0 | |||
\end{bmatrix} | |||
\begin{bmatrix} | |||
g^{\mathsf T} \\ | |||
\lambda^{\mathsf T} | |||
\end{bmatrix} | |||
= | |||
\begin{bmatrix} | |||
\mathrm{AW}^2j^{\mathsf T} \\ | |||
\mathrm{B}^{\mathsf T}j^{\mathsf T} | |||
\end{bmatrix} | |||
</math> | |||
The problem is feasible if | The problem is feasible if |