User:Sintel/CTE tuning: Difference between revisions

Sintel (talk | contribs)
No edit summary
Sintel (talk | contribs)
No edit summary
Line 8: Line 8:
<math>
<math>
\begin{align}
\begin{align}
& \underset{g}{\text{minimize}}  && \left\|  g\mathrm{V} - j  \right\|^2  \\
& \underset{g}{\text{minimize}}  && \left\|  g\mathrm{AW} - j\mathrm{W}   \right\|^2  \\
& \text{subject to} &&  (g\mathrm{A} - j_0)b_i = j_0, \quad i = 1, \dots, m \\
& \text{subject to} &&  g\mathrm{AB} = j\mathrm{B} \\
\end{align}
\end{align}
</math>
</math>


where ''g'' is the generator list, V = AW the Tenney-weighted temperament mapping, ''j'' = ''j''<sub>0</sub>W the Tenney-weighted [[JIP]], and <math>b_i</math> is the ''i''-th monzo. If we stack all the ''b''s into a matrix B, then the problem can be solved using he method of lagrange multipliers.
where ''g'' is the generator list, V = AW the Tenney-weighted temperament mapping, ''j'' is the [[JIP]], and <math>\mathrm{B}</math> is a matrix obtained by stacking the monzos that we need to be just. This problem can be solved using the method of lagrange multipliers:
 
<math>
\begin{bmatrix}
\mathrm{AW^2A}^{\mathsf T} & \mathrm{AB} \\
\mathrm{(AB)}^{\mathsf T} & 0
\end{bmatrix}
 
\begin{bmatrix}
g^{\mathsf T}  \\
\lambda^{\mathsf T}
\end{bmatrix}
=
\begin{bmatrix}
\mathrm{AW}^2j^{\mathsf T} \\
\mathrm{B}^{\mathsf T}j^{\mathsf T}
\end{bmatrix}
</math>
 


The problem is feasible if
The problem is feasible if