Defactoring: Difference between revisions
Cmloegcmluin (talk | contribs) →other details to report: extract the "development notes" typo info |
Cmloegcmluin (talk | contribs) →vs. HNF: note re: HCF |
||
Line 11: | Line 11: | ||
== vs. HNF == | == vs. HNF == | ||
More importantly, and perhaps partially a result of this weak understanding of the difference between the conventions for normal and canonical forms, the xenharmonic community has mistakenly used HNF as if it provides a unique representation of equivalent mappings. To be more specific, HNF does provide a unique representation of ''matrices'', i.e. from a perspective of pure mathematics, and so you will certainly find throughout mathematical literature that HNF is described as providing a unique representation, and this is correct. However, when applied to the RTT domain, i.e. to ''mappings'', the HNF sometimes fails to identify equivalent mappings as such. | More importantly, and perhaps partially a result of this weak understanding of the difference between the conventions for normal and canonical forms, the xenharmonic community has mistakenly used HNF as if it provides a unique representation of equivalent mappings. To be more specific, HNF does provide a unique representation of ''matrices'', i.e. from a perspective of pure mathematics, and so you will certainly find throughout mathematical literature that HNF is described as providing a unique representation, and this is correct. However, when applied to the RTT domain, i.e. to ''mappings'', the HNF sometimes fails to identify equivalent mappings as such.<ref>There is also a rarely mentioned Hermite Canonical Form, or HCF, described here: http://home.iitk.ac.in/~rksr/html/03CANONICALFACTORIZATIONS.htm, which sort of combines the HNF's normalization constraint and the RREF's reduced constraint (all pivots equal 1, all other entries in pivot columns are 0, both above and below the pivot), but we didn't find it useful because due to its constraint that all pivots be 1, it does not preserve periods that are genuinely unit fractions of an octave (at first glance, when a pivot is not equal to 1, it might trigger you to think that the mapping is enfactored. But temperaments can legitimately have generators that divide primes evenly, such as 5-limit Blackwood, {{vector|{{map|5 8 0}} {{map|0 0 1}}}}, which divides the octave into 5 parts. So any form that enforces pivots all be 1's, such as HCF and RREF, would fail this criteria.) It also doesn't qualify as an echelon form, which becomes apparent only when you use it on rank-deficient matrices, because it doesn't require the rows of all zeros to be at the bottom; instead it (bizarrely, though maybe it's related to how the SNF requires all pivots exactly along the main diagonal) requires the rows to be sorted so that all the pivots fall on the main diagonal.</ref> | ||
The critical flaw with HNF is its failure to defactor matrices<ref>This is because dividing rows is not a permitted elementary row operation when computing the HNF. See: https://math.stackexchange.com/a/685922</ref>. The canonical form that will be described here, on the other hand, ''does'' defactor matrices, and therefore it delivers a truly canonical result. | The critical flaw with HNF is its failure to defactor matrices<ref>This is because dividing rows is not a permitted elementary row operation when computing the HNF. See: https://math.stackexchange.com/a/685922</ref>. The canonical form that will be described here, on the other hand, ''does'' defactor matrices, and therefore it delivers a truly canonical result. |