Defactoring: Difference between revisions
Cmloegcmluin (talk | contribs) |
Cmloegcmluin (talk | contribs) |
||
Line 1,038: | Line 1,038: | ||
==== SNF ==== | ==== SNF ==== | ||
There is also the '''[https://en.wikipedia.org/wiki/Smith_normal_form Smith Normal Form]''', or '''SNF''', but we won't be discussing it in this context, because putting a mapping into SNF obliterates a lot of meaningful RTT information. SNF is also echelon, and integer, so like HNF it is also always IREF. But SNF requires that every single entry other than the pivots are zero, and that the pivots all fall exactly along the main diagonal of the matrix. The SNF essentially reduces a matrix down to the information of what its rank is and whether it is enfactored. For example, all 5-limit rank-2 temperaments such as meantone, porcupine, mavila, hanson, etc. have the same SNF: {{vector|{{map|1 0 0}} {{map|0 1 0}}}}. Or, if you 2-enfactor them, they will all have the SNF {{vector|{{map|1 0 0}} {{map|0 2 0}}}}. So while the SNF is closely related to defactoring, it is not itself a useful form to put mappings into.<ref>Here is a useful resource for computing the Smith Normal Form manually, if you are interested: https://math.stackexchange.com/questions/133076/computing-the-smith-normal-form</ref> | There is also the '''[https://en.wikipedia.org/wiki/Smith_normal_form Smith Normal Form]''', or '''SNF''', but we won't be discussing it in this context, because putting a mapping into SNF obliterates a lot of meaningful RTT information. SNF is also echelon, and integer, so like HNF it is also always IREF. But SNF requires that every single entry other than the pivots are zero, and that the pivots all fall exactly along the main diagonal of the matrix. The SNF essentially reduces a matrix down to the information of what its rank is and whether it is enfactored. For example, all 5-limit rank-2 temperaments such as meantone, porcupine, mavila, hanson, etc. have the same SNF: {{vector|{{map|1 0 0}} {{map|0 1 0}}}}. Or, if you 2-enfactor them, they will all have the SNF {{vector|{{map|1 0 0}} {{map|0 2 0}}}}. So while the SNF is closely related to defactoring, it is not itself a useful form to put mappings into.<ref>Here is a useful resource for computing the Smith Normal Form manually, if you are interested: https://math.stackexchange.com/questions/133076/computing-the-smith-normal-form The fact that it involves calculating so many GCDs is unsurprising given its ability to defactor matrices.</ref> | ||
{| class="wikitable" style="text-align: center;" | {| class="wikitable" style="text-align: center;" |