30edt: Difference between revisions

Wikispaces>MasonGreen1
**Imported revision 588431640 - Original comment: **
Wikispaces>JosephRuhf
**Imported revision 596310862 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:MasonGreen1|MasonGreen1]] and made on <tt>2016-07-31 12:37:04 UTC</tt>.<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016-10-21 00:26:46 UTC</tt>.<br>
: The original revision id was <tt>588431640</tt>.<br>
: The original revision id was <tt>596310862</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 10: Line 10:
Because 19edo has the 3rd, 5th, 7th, and 13th harmonics all flat (the latter two very flat), it benefits greatly from octave stretching. 30edt is one possible alternative; at the cost of sharpening the octave, it achieves much better matches to the odd harmonics; the 3 is by definition just, the 5 slightly sharp, and the 7 and 13 slightly flat.
Because 19edo has the 3rd, 5th, 7th, and 13th harmonics all flat (the latter two very flat), it benefits greatly from octave stretching. 30edt is one possible alternative; at the cost of sharpening the octave, it achieves much better matches to the odd harmonics; the 3 is by definition just, the 5 slightly sharp, and the 7 and 13 slightly flat.
=== ===  
=== ===  
===&lt;span style="font-size: 1.4em;"&gt;Intervals of 30edt&lt;/span&gt;===
|| Degrees || Cents || Approximate Ratios || Sigma scale name ||
|| 0 || 0 || &lt;span style="color: #660000;"&gt;[[1_1|1/1]]&lt;/span&gt; || C ||
|| 1 || 63.3985 || 28/27, 27/26 || C#/Dbb ||
|| 2 || 126.797 || [[14_13|14/13]], [[15_14|15/14]], [[16_15|16/15]], 29/27 || Cx/Db ||
|| 3 || 190.1955 || 10/9~9/8 || D ||
|| 4 || 253.594 || [[15_13|15/13]] || D#/Ebb ||
|| 5 || 316.9925 || 6/5 || Dx/Eb ||
|| 6 || 380.391 || &lt;span style="color: #660000;"&gt;[[5_4|5/4]]&lt;/span&gt; || E ||
|| 7 || 443.7895 || 9/7 || E#/Fb ||
|| 8 || 507.188 || [[4_3|4/3]] || F ||
|| 9 || 570.5865 || 7/5 || F#/Gbb ||
|| 10 || 633.985 || [[13_9|13/9]] || Fx/Gb ||
|| 11 || 697.3835 || 3/2 || G ||
|| 12 || 760.782 || &lt;span style="color: #660000;"&gt;[[14_9|14/9]]&lt;/span&gt; || G#/Hbb ||
|| 13 || 824.1805 || 8/5 || Gx/Hb ||
|| 14 || 887.579 || [[5_3|5/3]] || H ||
|| 15 || 950.9775 || 19/11 || H#/Jbb ||
|| 16 || 1014.376 || [[9_5|9/5]] || Hx/Jb ||
|| 17 || 1077.7745 || 13/7 || J ||
|| 18 || 1141.173 || &lt;span style="color: #660000;"&gt;[[27_14|27/14]]&lt;/span&gt; || J#/Kb ||
|| 19 || 1204.5715 || 2/1 || K ||
|| 20 || 1267.970 || [[27_13|27/13]] || K#/Lbb ||
|| 21 || 1331.3685 || 28/13 || Kx/Lb ||
|| 22 || 1394.767 || [[9_4|9/4]] ([[9_8|9/8]] plus an octave) || L ||
|| 23 || 1458.1655 || 7/3 || L#/Abb ||
|| 24 || 1521.564 || [[12_5|12/5]] (&lt;span style="color: #660000;"&gt;[[6_5|6/5]]&lt;/span&gt; plus an octave) || Lx/Ab ||
|| 25 || 1584.9625 || 5/2 || A ||
|| 26 || 1648.361 || [[13_5|13/5]] ([[13_10|13/10]] plus an octave) || A#/Bb ||
|| 27 || 1711.7595 || 8/3 || B ||
|| 28 || 1775.158 || [[14_5|14/5]] ([[7_5|7/5]] plus an octave) || B#/Cbb ||
|| 29 || 1838.5565 || 26/9 || Bx/Cb ||
|| 30 || 1901.955 || [[3_1|3/1]] || C ||
30edt contains all [[19edo]] intervals within 3/1, all temepered progressively sharper. The accumulation of the .241 cent sharpening of the unit step relative to 19edo leads to the excellent 6edt approximations of 6/5 and 5/2. Non-redundantly with simpler edts, the 41 degree ~9/2 is only .6615 cents flatter than that in 6edo.
30edt also contains all the MOS contained in 15edt, being the double of this equal division. Being even, 30edt introduces
MOS with an even number of periods per tritave such as a 6L 6s similar to Hexe Dodecatonic. This MOS has a period of 1/6 of the tritave and the generator is a single or double step. The major scale is sLsLsLsLsLsL, and the minor scale is LsLsLsLsLsLs. Being a "real" 3/2, the interval of 11 degrees generates an unfair Sigma scale of 8L 3s and the major scale is LLsLLLsLLsL. The sharp 9/7 of 7 degrees, in addition to generating a Lambda MOS will generate a 4L 9s unfair Superlambda MOS which does not border on being atonal as the 17edt rendition does.
----
----
===**Compositions in 30edt**===  
===**Compositions in 30edt**===  
Line 19: Line 58:
Because 19edo has the 3rd, 5th, 7th, and 13th harmonics all flat (the latter two very flat), it benefits greatly from octave stretching. 30edt is one possible alternative; at the cost of sharpening the octave, it achieves much better matches to the odd harmonics; the 3 is by definition just, the 5 slightly sharp, and the 7 and 13 slightly flat.&lt;br /&gt;
Because 19edo has the 3rd, 5th, 7th, and 13th harmonics all flat (the latter two very flat), it benefits greatly from octave stretching. 30edt is one possible alternative; at the cost of sharpening the octave, it achieves much better matches to the odd harmonics; the 3 is by definition just, the 5 slightly sharp, and the 7 and 13 slightly flat.&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc0"&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt; &lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc0"&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt; &lt;/h3&gt;
  &lt;hr /&gt;
  &lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x--Intervals of 30edt"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;&lt;span style="font-size: 1.4em;"&gt;Intervals of 30edt&lt;/span&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x--Compositions in 30edt"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;&lt;strong&gt;Compositions in 30edt&lt;/strong&gt;&lt;/h3&gt;
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;Degrees&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Cents&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Approximate Ratios&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Sigma scale name&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="color: #660000;"&gt;&lt;a class="wiki_link" href="/1_1"&gt;1/1&lt;/a&gt;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;C&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;63.3985&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;28/27, 27/26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;C#/Dbb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;126.797&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/14_13"&gt;14/13&lt;/a&gt;, &lt;a class="wiki_link" href="/15_14"&gt;15/14&lt;/a&gt;, &lt;a class="wiki_link" href="/16_15"&gt;16/15&lt;/a&gt;, 29/27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Cx/Db&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;190.1955&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10/9~9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;D&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;253.594&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/15_13"&gt;15/13&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;D#/Ebb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;316.9925&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Dx/Eb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;380.391&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="color: #660000;"&gt;&lt;a class="wiki_link" href="/5_4"&gt;5/4&lt;/a&gt;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;E&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;443.7895&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;E#/Fb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;507.188&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/4_3"&gt;4/3&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;F&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;570.5865&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;F#/Gbb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;633.985&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/13_9"&gt;13/9&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Fx/Gb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;697.3835&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;G&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;760.782&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="color: #660000;"&gt;&lt;a class="wiki_link" href="/14_9"&gt;14/9&lt;/a&gt;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;G#/Hbb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;824.1805&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Gx/Hb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;887.579&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/5_3"&gt;5/3&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;H&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;950.9775&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;H#/Jbb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1014.376&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/9_5"&gt;9/5&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Hx/Jb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1077.7745&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;J&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1141.173&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="color: #660000;"&gt;&lt;a class="wiki_link" href="/27_14"&gt;27/14&lt;/a&gt;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;J#/Kb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1204.5715&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;K&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1267.970&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/27_13"&gt;27/13&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;K#/Lbb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1331.3685&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;28/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Kx/Lb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1394.767&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/9_4"&gt;9/4&lt;/a&gt; (&lt;a class="wiki_link" href="/9_8"&gt;9/8&lt;/a&gt; plus an octave)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;L&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1458.1655&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;L#/Abb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1521.564&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/12_5"&gt;12/5&lt;/a&gt; (&lt;span style="color: #660000;"&gt;&lt;a class="wiki_link" href="/6_5"&gt;6/5&lt;/a&gt;&lt;/span&gt; plus an octave)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Lx/Ab&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1584.9625&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;A&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1648.361&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/13_5"&gt;13/5&lt;/a&gt; (&lt;a class="wiki_link" href="/13_10"&gt;13/10&lt;/a&gt; plus an octave)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;A#/Bb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1711.7595&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;B&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1775.158&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/14_5"&gt;14/5&lt;/a&gt; (&lt;a class="wiki_link" href="/7_5"&gt;7/5&lt;/a&gt; plus an octave)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;B#/Cbb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1838.5565&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;26/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Bx/Cb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1901.955&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/3_1"&gt;3/1&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;C&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
30edt contains all &lt;a class="wiki_link" href="/19edo"&gt;19edo&lt;/a&gt; intervals within 3/1, all temepered progressively sharper. The accumulation of the .241 cent sharpening of the unit step relative to 19edo leads to the excellent 6edt approximations of 6/5 and 5/2. Non-redundantly with simpler edts, the 41 degree ~9/2 is only .6615 cents flatter than that in 6edo.&lt;br /&gt;
&lt;br /&gt;
30edt also contains all the MOS contained in 15edt, being the double of this equal division. Being even, 30edt introduces&lt;br /&gt;
MOS with an even number of periods per tritave such as a 6L 6s similar to Hexe Dodecatonic. This MOS has a period of 1/6 of the tritave and the generator is a single or double step. The major scale is sLsLsLsLsLsL, and the minor scale is LsLsLsLsLsLs. Being a &amp;quot;real&amp;quot; 3/2, the interval of 11 degrees generates an unfair Sigma scale of 8L 3s and the major scale is LLsLLLsLLsL. The sharp 9/7 of 7 degrees, in addition to generating a Lambda MOS will generate a 4L 9s unfair Superlambda MOS which does not border on being atonal as the 17edt rendition does.&lt;br /&gt;
&lt;br /&gt;
&lt;hr /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc2"&gt;&lt;a name="x--Compositions in 30edt"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;&lt;strong&gt;Compositions in 30edt&lt;/strong&gt;&lt;/h3&gt;
  &lt;br /&gt;
  &lt;br /&gt;
&lt;ul&gt;&lt;li&gt;&amp;quot;&lt;a class="wiki_link_ext" href="https://soundcloud.com/mason-l-green/room-full-of-steam" rel="nofollow"&gt;Room Full Of Steam&lt;/a&gt;&amp;quot;, Mason Green. In the key of &amp;quot;Eb subminor&amp;quot;.&lt;/li&gt;&lt;/ul&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;ul&gt;&lt;li&gt;&amp;quot;&lt;a class="wiki_link_ext" href="https://soundcloud.com/mason-l-green/room-full-of-steam" rel="nofollow"&gt;Room Full Of Steam&lt;/a&gt;&amp;quot;, Mason Green. In the key of &amp;quot;Eb subminor&amp;quot;.&lt;/li&gt;&lt;/ul&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>