26edo: Difference between revisions
Wikispaces>xenwolf **Imported revision 239003133 - Original comment: 13-limit is prime *and* odd :)** |
Wikispaces>igliashon **Imported revision 242824431 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:igliashon|igliashon]] and made on <tt>2011-07-25 21:33:08 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>242824431</tt>.<br> | ||
: The revision comment was: <tt> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
Line 74: | Line 74: | ||
=Intervals= | =Intervals= | ||
|| degree || [[cent]]s || | || degree || [[cent]]s ||= Approximate | ||
|| 0 || 0 || | Ratios* || | ||
|| 1 || 46.154 || | || 0 || 0 ||= 1/1 || | ||
|| 2 || 92.308 || | || 1 || 46.154 ||= 33/32, 49/48, 36/35, 25/24 || | ||
|| 3 || 138.46 || | || 2 || 92.308 ||= 21/20 || | ||
|| 4 || 184.62 || | || 3 || 138.46 ||= 14/13, 16/15 || | ||
|| 5 || 230.77 || | || 4 || 184.62 ||= 9/8, 10/9, 11/10 || | ||
|| 6 || 276.92 || | || 5 || 230.77 ||= 8/7 || | ||
|| 7 || 323.08 || | || 6 || 276.92 ||= 7/6, 13/11, 33/28 || | ||
|| 8 || 369.23 || | || 7 || 323.08 ||= 6/5 || | ||
|| 9 || 415.38 || | || 8 || 369.23 ||= 5/4, 16/13 || | ||
|| 10 || 461.54 || | || 9 || 415.38 ||= 9/7, 14/11, 33/26 || | ||
|| 11 || 507.69 || | || 10 || 461.54 ||= 21/16, 13/10 || | ||
|| 12 || 553.85 || | || 11 || 507.69 ||= 4/3 || | ||
|| 13 || 600.00 || | || 12 || 553.85 ||= 11/8, 18/13 || | ||
|| 14 || 646.15 || | || 13 || 600.00 ||= 7/5, 10/7 || | ||
|| 15 || 692.31 || | || 14 || 646.15 ||= 16/11, 13/9 || | ||
|| 16 || 738.46 || | || 15 || 692.31 ||= 3/2 || | ||
|| 17 || 784.62 || | || 16 || 738.46 ||= 32/21, 20/13 || | ||
|| 18 || 830.77 || | || 17 || 784.62 ||= 11/7, 14/9 || | ||
|| 19 || 876.92 || | || 18 || 830.77 ||= 13/8, 8/5 || | ||
|| 20 || 923.08 || | || 19 || 876.92 ||= 5/3 || | ||
|| 21 || 969.23 || | || 20 || 923.08 ||= 12/7, 22/13 || | ||
|| 22 || 1015.4 || | || 21 || 969.23 ||= 7/4 || | ||
|| 23 || 1061.5 || | || 22 || 1015.4 ||= 9/5, 16/9, 20/11 || | ||
|| 24 || 1107.7 || | || 23 || 1061.5 ||= 13/7, 15/8 || | ||
|| 25 || 1153.8 || | || 24 || 1107.7 ||= 40/21 || | ||
|| 25 || 1153.8 ||= 64/33, 96/49, 35/18, 48/25 || | |||
|| 26 || 1200 ||= 2/1 || | |||
*based on treating 26-EDO as a 13-limit temperament; other approaches are possible. | |||
=Additional Scalar Bases Available in 26-EDO:= | =Additional Scalar Bases Available in 26-EDO:= | ||
Since the perfect 5th in 26-EDO spans 15 degrees, it can be divided into three equal parts (each approximately an 8/7) as well as five equal parts (each approximately a 13/12). The former approach produces MOS at 1L+4s, 5L+1s, and 5L+6s (5 5 5 5 6, 5 5 5 5 5 1, and 4 1 4 1 4 1 4 1 4 1 1 respectively), and is excellent for 4:6:7 triads. The latter produces MOS at 1L+7s and 8L+1s (3 3 3 3 3 3 3 5 and 3 3 3 3 3 3 3 3 2 respectively), and is fairly well-supplied with 4:6:7:11:13 pentads. It also works well for more conventional (thought further from Just) 6:7:9 triads, as well as 4:5:6 triads that use the worse mapping for 5 (making 5/4 the 415.38-cent interval). | Since the perfect 5th in 26-EDO spans 15 degrees, it can be divided into three equal parts (each approximately an 8/7) as well as five equal parts (each approximately a 13/12). The former approach produces MOS at 1L+4s, 5L+1s, and 5L+6s (5 5 5 5 6, 5 5 5 5 5 1, and 4 1 4 1 4 1 4 1 4 1 1 respectively), and is excellent for 4:6:7 triads. The latter produces MOS at 1L+7s and 8L+1s (3 3 3 3 3 3 3 5 and 3 3 3 3 3 3 3 3 2 respectively), and is fairly well-supplied with 4:6:7:11:13 pentads. It also works well for more conventional (thought further from Just) 6:7:9 triads, as well as 4:5:6 triads that use the worse mapping for 5 (making 5/4 the 415.38-cent interval). | ||
Line 626: | Line 628: | ||
Orgone has a minimax tuning which sharpens both 7 and 11 by 1/5 of an orgonisma, or 1.679 cents. This makes the generator g a 77/64 sharp by 2/5 of the orgonisma. From this we may conclude that 24/89 or 31/115 would be reasonable alternatives to the 7/26 generator.<br /> | Orgone has a minimax tuning which sharpens both 7 and 11 by 1/5 of an orgonisma, or 1.679 cents. This makes the generator g a 77/64 sharp by 2/5 of the orgonisma. From this we may conclude that 24/89 or 31/115 would be reasonable alternatives to the 7/26 generator.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:714:&lt;img src=&quot;/file/view/orgone_heptatonic.jpg/155606933/orgone_heptatonic.jpg&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/orgone_heptatonic.jpg/155606933/orgone_heptatonic.jpg" alt="orgone_heptatonic.jpg" title="orgone_heptatonic.jpg" /><!-- ws:end:WikiTextLocalImageRule:714 --><br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:6 -->Intervals</h1> | <!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:6 -->Intervals</h1> | ||
Line 637: | Line 639: | ||
</td> | </td> | ||
<td><a class="wiki_link" href="/cent">cent</a>s<br /> | <td><a class="wiki_link" href="/cent">cent</a>s<br /> | ||
</td> | |||
<td style="text-align: center;">Approximate<br /> | |||
Ratios*<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 643: | Line 648: | ||
</td> | </td> | ||
<td>0<br /> | <td>0<br /> | ||
</td> | |||
<td style="text-align: center;">1/1<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 649: | Line 656: | ||
</td> | </td> | ||
<td>46.154<br /> | <td>46.154<br /> | ||
</td> | |||
<td style="text-align: center;">33/32, 49/48, 36/35, 25/24<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 655: | Line 664: | ||
</td> | </td> | ||
<td>92.308<br /> | <td>92.308<br /> | ||
</td> | |||
<td style="text-align: center;">21/20<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 661: | Line 672: | ||
</td> | </td> | ||
<td>138.46<br /> | <td>138.46<br /> | ||
</td> | |||
<td style="text-align: center;">14/13, 16/15<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 667: | Line 680: | ||
</td> | </td> | ||
<td>184.62<br /> | <td>184.62<br /> | ||
</td> | |||
<td style="text-align: center;">9/8, 10/9, 11/10<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 673: | Line 688: | ||
</td> | </td> | ||
<td>230.77<br /> | <td>230.77<br /> | ||
</td> | |||
<td style="text-align: center;">8/7<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 679: | Line 696: | ||
</td> | </td> | ||
<td>276.92<br /> | <td>276.92<br /> | ||
</td> | |||
<td style="text-align: center;">7/6, 13/11, 33/28<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 685: | Line 704: | ||
</td> | </td> | ||
<td>323.08<br /> | <td>323.08<br /> | ||
</td> | |||
<td style="text-align: center;">6/5<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 691: | Line 712: | ||
</td> | </td> | ||
<td>369.23<br /> | <td>369.23<br /> | ||
</td> | |||
<td style="text-align: center;">5/4, 16/13<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 697: | Line 720: | ||
</td> | </td> | ||
<td>415.38<br /> | <td>415.38<br /> | ||
</td> | |||
<td style="text-align: center;">9/7, 14/11, 33/26<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 703: | Line 728: | ||
</td> | </td> | ||
<td>461.54<br /> | <td>461.54<br /> | ||
</td> | |||
<td style="text-align: center;">21/16, 13/10<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 709: | Line 736: | ||
</td> | </td> | ||
<td>507.69<br /> | <td>507.69<br /> | ||
</td> | |||
<td style="text-align: center;">4/3<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 715: | Line 744: | ||
</td> | </td> | ||
<td>553.85<br /> | <td>553.85<br /> | ||
</td> | |||
<td style="text-align: center;">11/8, 18/13<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 721: | Line 752: | ||
</td> | </td> | ||
<td>600.00<br /> | <td>600.00<br /> | ||
</td> | |||
<td style="text-align: center;">7/5, 10/7<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 727: | Line 760: | ||
</td> | </td> | ||
<td>646.15<br /> | <td>646.15<br /> | ||
</td> | |||
<td style="text-align: center;">16/11, 13/9<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 733: | Line 768: | ||
</td> | </td> | ||
<td>692.31<br /> | <td>692.31<br /> | ||
</td> | |||
<td style="text-align: center;">3/2<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 739: | Line 776: | ||
</td> | </td> | ||
<td>738.46<br /> | <td>738.46<br /> | ||
</td> | |||
<td style="text-align: center;">32/21, 20/13<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 745: | Line 784: | ||
</td> | </td> | ||
<td>784.62<br /> | <td>784.62<br /> | ||
</td> | |||
<td style="text-align: center;">11/7, 14/9<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 751: | Line 792: | ||
</td> | </td> | ||
<td>830.77<br /> | <td>830.77<br /> | ||
</td> | |||
<td style="text-align: center;">13/8, 8/5<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 757: | Line 800: | ||
</td> | </td> | ||
<td>876.92<br /> | <td>876.92<br /> | ||
</td> | |||
<td style="text-align: center;">5/3<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 763: | Line 808: | ||
</td> | </td> | ||
<td>923.08<br /> | <td>923.08<br /> | ||
</td> | |||
<td style="text-align: center;">12/7, 22/13<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 769: | Line 816: | ||
</td> | </td> | ||
<td>969.23<br /> | <td>969.23<br /> | ||
</td> | |||
<td style="text-align: center;">7/4<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 775: | Line 824: | ||
</td> | </td> | ||
<td>1015.4<br /> | <td>1015.4<br /> | ||
</td> | |||
<td style="text-align: center;">9/5, 16/9, 20/11<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 781: | Line 832: | ||
</td> | </td> | ||
<td>1061.5<br /> | <td>1061.5<br /> | ||
</td> | |||
<td style="text-align: center;">13/7, 15/8<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 787: | Line 840: | ||
</td> | </td> | ||
<td>1107.7<br /> | <td>1107.7<br /> | ||
</td> | |||
<td style="text-align: center;">40/21<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 793: | Line 848: | ||
</td> | </td> | ||
<td>1153.8<br /> | <td>1153.8<br /> | ||
</td> | |||
<td style="text-align: center;">64/33, 96/49, 35/18, 48/25<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>26<br /> | |||
</td> | |||
<td>1200<br /> | |||
</td> | |||
<td style="text-align: center;">2/1<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
<br /> | *based on treating 26-EDO as a 13-limit temperament; other approaches are possible.<br /> | ||
<!-- ws:start:WikiTextHeadingRule:8:&lt;h1&gt; --><h1 id="toc4"><a name="Additional Scalar Bases Available in 26-EDO:"></a><!-- ws:end:WikiTextHeadingRule:8 -->Additional Scalar Bases Available in 26-EDO:</h1> | <!-- ws:start:WikiTextHeadingRule:8:&lt;h1&gt; --><h1 id="toc4"><a name="Additional Scalar Bases Available in 26-EDO:"></a><!-- ws:end:WikiTextHeadingRule:8 -->Additional Scalar Bases Available in 26-EDO:</h1> | ||
Since the perfect 5th in 26-EDO spans 15 degrees, it can be divided into three equal parts (each approximately an 8/7) as well as five equal parts (each approximately a 13/12). The former approach produces MOS at 1L+4s, 5L+1s, and 5L+6s (5 5 5 5 6, 5 5 5 5 5 1, and 4 1 4 1 4 1 4 1 4 1 1 respectively), and is excellent for 4:6:7 triads. The latter produces MOS at 1L+7s and 8L+1s (3 3 3 3 3 3 3 5 and 3 3 3 3 3 3 3 3 2 respectively), and is fairly well-supplied with 4:6:7:11:13 pentads. It also works well for more conventional (thought further from Just) 6:7:9 triads, as well as 4:5:6 triads that use the worse mapping for 5 (making 5/4 the 415.38-cent interval).<br /> | Since the perfect 5th in 26-EDO spans 15 degrees, it can be divided into three equal parts (each approximately an 8/7) as well as five equal parts (each approximately a 13/12). The former approach produces MOS at 1L+4s, 5L+1s, and 5L+6s (5 5 5 5 6, 5 5 5 5 5 1, and 4 1 4 1 4 1 4 1 4 1 1 respectively), and is excellent for 4:6:7 triads. The latter produces MOS at 1L+7s and 8L+1s (3 3 3 3 3 3 3 5 and 3 3 3 3 3 3 3 3 2 respectively), and is fairly well-supplied with 4:6:7:11:13 pentads. It also works well for more conventional (thought further from Just) 6:7:9 triads, as well as 4:5:6 triads that use the worse mapping for 5 (making 5/4 the 415.38-cent interval).<br /> |