26edo: Difference between revisions

Wikispaces>igliashon
**Imported revision 242831105 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 250376628 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:igliashon|igliashon]] and made on <tt>2011-07-25 22:23:40 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-02 15:00:28 UTC</tt>.<br>
: The original revision id was <tt>242831105</tt>.<br>
: The original revision id was <tt>250376628</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//26edo// divides the [[octave]] into 26 equal parts of 46.154 [[cent]]s each. It tempers out 81/80 in the [[5-limit]], making it a meantone tuning with a very flat fifth. In the [[7-limit]], it tempers out 50/49, 525/512 and 875/864, and supports [[Meantone family|injera]] and [[Meantone family|flattone]] temperaments. It really comes into its own as a higher-limit temperament, being the smallest equal division which represents the [[13-limit|13 odd limit]] [[consistent| consistent]]ly. 26edo has a very good approximation of the harmonic seventh ([[7_4|7/4]]).
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
 
//26edo// divides the [[octave]] into 26 equal parts of 46.154 [[cent]]s each. It tempers out 81/80 in the [[5-limit]], making it a meantone tuning with a very flat fifth. In the [[7-limit]], it tempers out 50/49, 525/512 and 875/864, and supports [[Meantone family|injera]] and [[Meantone family|flattone]] temperaments. It really comes into its own as a higher-limit temperament, being the smallest equal division which represents the [[13-limit|13 odd limit]] [[consistent| consistent]]ly. 26edo has a very good approximation of the harmonic seventh ([[7_4|7/4]]).


=**Structure**=  
=**Structure**=  
Line 121: Line 123:
[[http://www.io.com/%7Ehmiller/midi/26tet.mid|Etude in 26-tone equal temperament]] [[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Herman/26tet.mp3|play]] by [[Herman Miller]]
[[http://www.io.com/%7Ehmiller/midi/26tet.mid|Etude in 26-tone equal temperament]] [[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Herman/26tet.mp3|play]] by [[Herman Miller]]
[[http://danielthompson.blogspot.com/2007/04/new-version-of-organ-study-1.html|A New Recording of Organ Study #1]] [[http://www.microtonalmusic.net/audio/organstudyremix26edo.mp3|play]] by [[Daniel Thompson]]
[[http://danielthompson.blogspot.com/2007/04/new-version-of-organ-study-1.html|A New Recording of Organ Study #1]] [[http://www.microtonalmusic.net/audio/organstudyremix26edo.mp3|play]] by [[Daniel Thompson]]
[[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Bobro/LittleFugueIn26_CBobro.mp3|Little Fugue in 26]] by [[Cameron Bobro]]</pre></div>
[[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Bobro/LittleFugueIn26_CBobro.mp3|Little Fugue in 26]] by [[Cameron Bobro]]
[[http://www.96edo.com/music/micro900607.mp3|Mcicrotonal music in 26-EDO]] by [[Shaahin Mohajeri]]</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;26edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;em&gt;26edo&lt;/em&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 26 equal parts of 46.154 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. It tempers out 81/80 in the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt;, making it a meantone tuning with a very flat fifth. In the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, it tempers out 50/49, 525/512 and 875/864, and supports &lt;a class="wiki_link" href="/Meantone%20family"&gt;injera&lt;/a&gt; and &lt;a class="wiki_link" href="/Meantone%20family"&gt;flattone&lt;/a&gt; temperaments. It really comes into its own as a higher-limit temperament, being the smallest equal division which represents the &lt;a class="wiki_link" href="/13-limit"&gt;13 odd limit&lt;/a&gt; &lt;a class="wiki_link" href="/consistent"&gt; consistent&lt;/a&gt;ly. 26edo has a very good approximation of the harmonic seventh (&lt;a class="wiki_link" href="/7_4"&gt;7/4&lt;/a&gt;).&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;26edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:16:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt;&lt;a href="#Structure"&gt;Structure&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:17 --&gt;&lt;!-- ws:start:WikiTextTocRule:18: --&gt; | &lt;a href="#Intervals"&gt;Intervals&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt; | &lt;a href="#Commas"&gt;Commas&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;!-- ws:start:WikiTextTocRule:20: --&gt; | &lt;a href="#Orgone Temperament"&gt;Orgone Temperament&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:20 --&gt;&lt;!-- ws:start:WikiTextTocRule:21: --&gt; | &lt;a href="#toc4"&gt; &lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:21 --&gt;&lt;!-- ws:start:WikiTextTocRule:22: --&gt; | &lt;a href="#Additional Scalar Bases Available in 26-EDO:"&gt;Additional Scalar Bases Available in 26-EDO:&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:22 --&gt;&lt;!-- ws:start:WikiTextTocRule:23: --&gt; | &lt;a href="#Literature"&gt;Literature&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:23 --&gt;&lt;!-- ws:start:WikiTextTocRule:24: --&gt; | &lt;a href="#Compositions"&gt;Compositions&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:24 --&gt;&lt;!-- ws:start:WikiTextTocRule:25: --&gt;
&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;br /&gt;
&lt;em&gt;26edo&lt;/em&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 26 equal parts of 46.154 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. It tempers out 81/80 in the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt;, making it a meantone tuning with a very flat fifth. In the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, it tempers out 50/49, 525/512 and 875/864, and supports &lt;a class="wiki_link" href="/Meantone%20family"&gt;injera&lt;/a&gt; and &lt;a class="wiki_link" href="/Meantone%20family"&gt;flattone&lt;/a&gt; temperaments. It really comes into its own as a higher-limit temperament, being the smallest equal division which represents the &lt;a class="wiki_link" href="/13-limit"&gt;13 odd limit&lt;/a&gt; &lt;a class="wiki_link" href="/consistent"&gt; consistent&lt;/a&gt;ly. 26edo has a very good approximation of the harmonic seventh (&lt;a class="wiki_link" href="/7_4"&gt;7/4&lt;/a&gt;).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Structure"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;strong&gt;Structure&lt;/strong&gt;&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Structure"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;strong&gt;Structure&lt;/strong&gt;&lt;/h1&gt;
Line 866: Line 871:
Orgone has a minimax tuning which sharpens both 7 and 11 by 1/5 of an orgonisma, or 1.679 cents. This makes the generator g a 77/64 sharp by 2/5 of the orgonisma. From this we may conclude that 24/89 or 31/115 would be reasonable alternatives to the 7/26 generator.&lt;br /&gt;
Orgone has a minimax tuning which sharpens both 7 and 11 by 1/5 of an orgonisma, or 1.679 cents. This makes the generator g a 77/64 sharp by 2/5 of the orgonisma. From this we may conclude that 24/89 or 31/115 would be reasonable alternatives to the 7/26 generator.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:716:&amp;lt;img src=&amp;quot;/file/view/orgone_heptatonic.jpg/155606933/orgone_heptatonic.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/orgone_heptatonic.jpg/155606933/orgone_heptatonic.jpg" alt="orgone_heptatonic.jpg" title="orgone_heptatonic.jpg" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:716 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:726:&amp;lt;img src=&amp;quot;/file/view/orgone_heptatonic.jpg/155606933/orgone_heptatonic.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/orgone_heptatonic.jpg/155606933/orgone_heptatonic.jpg" alt="orgone_heptatonic.jpg" title="orgone_heptatonic.jpg" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:726 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt; &lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt; &lt;/h1&gt;
Line 883: Line 888:
&lt;a class="wiki_link_ext" href="http://www.io.com/%7Ehmiller/midi/26tet.mid" rel="nofollow"&gt;Etude in 26-tone equal temperament&lt;/a&gt; &lt;a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Herman/26tet.mp3" rel="nofollow"&gt;play&lt;/a&gt; by &lt;a class="wiki_link" href="/Herman%20Miller"&gt;Herman Miller&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.io.com/%7Ehmiller/midi/26tet.mid" rel="nofollow"&gt;Etude in 26-tone equal temperament&lt;/a&gt; &lt;a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Herman/26tet.mp3" rel="nofollow"&gt;play&lt;/a&gt; by &lt;a class="wiki_link" href="/Herman%20Miller"&gt;Herman Miller&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://danielthompson.blogspot.com/2007/04/new-version-of-organ-study-1.html" rel="nofollow"&gt;A New Recording of Organ Study #1&lt;/a&gt; &lt;a class="wiki_link_ext" href="http://www.microtonalmusic.net/audio/organstudyremix26edo.mp3" rel="nofollow"&gt;play&lt;/a&gt; by &lt;a class="wiki_link" href="/Daniel%20Thompson"&gt;Daniel Thompson&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://danielthompson.blogspot.com/2007/04/new-version-of-organ-study-1.html" rel="nofollow"&gt;A New Recording of Organ Study #1&lt;/a&gt; &lt;a class="wiki_link_ext" href="http://www.microtonalmusic.net/audio/organstudyremix26edo.mp3" rel="nofollow"&gt;play&lt;/a&gt; by &lt;a class="wiki_link" href="/Daniel%20Thompson"&gt;Daniel Thompson&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Bobro/LittleFugueIn26_CBobro.mp3" rel="nofollow"&gt;Little Fugue in 26&lt;/a&gt; by &lt;a class="wiki_link" href="/Cameron%20Bobro"&gt;Cameron Bobro&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Bobro/LittleFugueIn26_CBobro.mp3" rel="nofollow"&gt;Little Fugue in 26&lt;/a&gt; by &lt;a class="wiki_link" href="/Cameron%20Bobro"&gt;Cameron Bobro&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.96edo.com/music/micro900607.mp3" rel="nofollow"&gt;Mcicrotonal music in 26-EDO&lt;/a&gt; by &lt;a class="wiki_link" href="/Shaahin%20Mohajeri"&gt;Shaahin Mohajeri&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>