SandBox: Difference between revisions
Line 1: | Line 1: | ||
{{SandBox please edit after this line}} | {{SandBox please edit after this line}} | ||
The '''Electrum temperaments''' are a | The '''Electrum temperaments''' are a type of rank-2 temperaments proposed by Iwuqety, inspired by the idea of using the [[acoustic phi]] (golden ratio <math>φ</math>) and acoustic silver ratio <math>δ_s</math> as generators, replacing the [[3/2]] perfect fifth and the [[2/1]] octave used in common practice music. [[wikipedia:Electrum|Electrum]] refers to naturally occurring alloy which is mainly made up of gold and silver. | ||
==Untempered | ==Untempered scale (arranged in quasi-Pythagorean fashion)== | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
Period = <math>δ_s</math> | Period = <math>δ_s</math> | ||
! colspan="3" | | ! colspan="3" |Hyper scale, generator = <math>φ</math> | ||
! colspan="3" | | ! colspan="3" |Hypo scale, generator = <math>φ^{-1}</math> | ||
|- | |- | ||
!In terms of metallic ratios | !In terms of metallic ratios | ||
Line 16: | Line 16: | ||
!Absolute cents | !Absolute cents | ||
|- | |- | ||
| colspan="2" |1 | | colspan="2" |<math>1</math> | ||
|0 | |0 | ||
|<math>δ_s</math> | |<math>δ_s</math> | ||
Line 44: | Line 44: | ||
|- | |- | ||
|<math>{δ_s^{-2}} {φ^4}</math> | |<math>{δ_s^{-2}} {φ^4}</math> | ||
|<math>\frac{(1 + \sqrt{5})^4 (3 -2\sqrt{2})}{2}</math> | |<math>\frac{(1 + \sqrt{5})^4 (3 - 2\sqrt{2})}{2}</math> | ||
|280.633 | |280.633 | ||
|<math>{δ_s^{3}} {φ^{-4}}</math> | |<math>{δ_s^{3}} {φ^{-4}}</math> | ||
|<math>\frac{16(7 + 5 \sqrt{2})}{(1 + \sqrt{5})^4}</math> | |<math>\frac{16(7 + 5 \sqrt{2})}{(1 + \sqrt{5})^4}</math> | ||
|1245.231 | |1245.231 | ||
|- | |||
|<math>{δ_s^{-2}} {φ^5}</math> | |||
|<math>\frac{(1 + \sqrt{5})^5 (3 - 2\sqrt{2})}{32}</math> | |||
|'''1113.724''' | |||
|<math>{δ_s^{3}} {φ^{-5}}</math> | |||
|<math>\frac{16(7 + 5 \sqrt{2})}{(1 + \sqrt{5})^4}</math> | |||
|'''412.140''' | |||
|- | |||
|<math>{δ_s^{-3}} {φ^6}</math> | |||
|<math>\frac{(1 + \sqrt{5})^6 (5\sqrt{2} - 7)}{64}</math> | |||
|'''420.950''' | |||
|<math>{δ_s^{4}} {φ^{-6}}</math> | |||
|<math>\frac{64(1 + \sqrt{2})^4}{(1 + \sqrt{5})^6}</math> | |||
|'''1104.914''' | |||
|- | |||
|<math>{δ_s^{-3}} {φ^7}</math> | |||
|<math>\frac{(1 + \sqrt{5})^7 (5 - 7\sqrt{2})}{128}</math> | |||
|1254.040 | |||
|<math>{δ_s^{4}} {φ^{-7}}</math> | |||
|<math>\frac{128(1 + \sqrt{2})^4}{(1 + \sqrt{5})^7}</math> | |||
|271.824 | |||
|- | |||
|<math>{δ_s^{-4}} {φ^8}</math> | |||
|<math>\frac{(1 + \sqrt{5})^8}{256(1 + sqrt{2})^4}</math> | |||
|561.267 | |||
|<math>{δ_s^{5}} {φ^{-8}}</math> | |||
|<math>\frac{256(1 + \sqrt{2})^5}{(1 + \sqrt{5})^8}</math> | |||
|964.597 | |||
|- | |||
|<math>{δ_s^{-4}} {φ^9}</math> | |||
|<math>\frac{(1 + \sqrt{5})^9}{512(1 + sqrt{2})^4}</math> | |||
|1394.357 | |||
|<math>{δ_s^{5}} {φ^{-9}}</math> | |||
|<math>\frac{512(1 + \sqrt{2})^5}{(1 + \sqrt{5})^9}</math> | |||
|131.507 | |||
|- | |||
|<math>{δ_s^{-5}} {φ^10}</math> | |||
|<math>\frac{(1 + \sqrt{5})^10}{1024(1 + sqrt{2})^5}</math> | |||
|701.583 | |||
|<math>{δ_s^{6}} {φ^{-10}}</math> | |||
|<math>\frac{1024(1 + \sqrt{2})^6}{(1 + \sqrt{5})^10}</math> | |||
|824.281 | |||
|- | |||
|<math>{δ_s^{-6}} {φ^11}</math> | |||
|<math>\frac{(1 + \sqrt{5})^11}{2048(1 + sqrt{2})^6}</math> | |||
|''8.809'' | |||
|<math>{δ_s^{6}} {φ^{-11}}</math> | |||
|<math>\frac{1024(1 + \sqrt{2})^5}{(1 + \sqrt{5})^10}</math> | |||
|''-8.809'' | |||
|} | |||
== Tempering out the comma == | |||
As shown above, the largest comma between the hyper-scale and the hypo-scale, produced by the two generators <math>φ</math> and <math>δ_s</math>, is a mere <math>{δ_s^{-6}} {φ^11}</math> ≈ 8.809¢, much smaller and more imperceptible than both the [[Pythagorean comma]] (23.460¢) and the [[Syntonic comma]] (81/80, 21.506¢). Hence, it is practically safe to temper it out: | |||
<math>{δ_s^{-6}} {φ^11} = 1</math> | |||
<math>φ^11 = δ_s^{6}</math> | |||
<math>φ = (\sqrt[11]{δ_s})^{6}</math> OR <math>δ_s = (\sqrt[6]{φ})^{11}</math> | |||
The solution on the left provides for an equal division of <math>δ_s</math> into 11 notes to approximate <math>φ</math> as step 6\11. Reversely, the alternative solution provides for an equal division of <math>φ</math> into 6 notes to approximate the period <math>δ_s</math> with 5 extra steps above <math>φ</math>. The former equal temperament puts more weight on the silver ratio while the latter preserves the golden ratio. | |||
Considering the archaeological analogy that electrum found in modern Anatolia contains more gold (70–90%) than electrum coins made in ancient Lydia (45–55%), 6ed-<math>φ</math> and 11ed-<math>δ_s</math> may be nicknamed "Anatolian Electrum" and "Lydian Electrum" respectively. Their intervals and differences with the untempered Electrum scales are listed below. | |||
{| class="wikitable" | |||
|+Anatolian Electrum (6ed-<math>φ</math>) | |||
!Step | |||
!In terms of <math>φ</math> | |||
!Absolute Cents | |||
!Closest hyper-interval (¢) | |||
!Closest hypo-interval (¢) | |||
!Difference (¢) | |||
|- | |||
|1 | |||
|<math>\sqrt[6]{φ}</math> | |||
|'''138.848''' | |||
|140.317 | |||
|131.507 | |||
| -1.47, +7.34 | |||
|- | |||
|2 | |||
|<math>\sqrt[3]{φ}</math> | |||
|'''277.700''' | |||
|280.633 | |||
|271.824 | |||
| -2.93, +5.88 | |||
|- | |||
|3 | |||
|<math>\sqrt{φ}</math> | |||
|'''416.545''' | |||
|420.950 | |||
|412.140 | |||
| -4.41, +4.41 | |||
|- | |||
|4 | |||
|<math>(\sqrt[3]{φ})^2</math> | |||
|'''555.394''' | |||
|561.267 | |||
|552.457 | |||
| -5.87, +2.94 | |||
|- | |||
|5 | |||
|<math>(\sqrt[6]{φ})^5</math> | |||
|'''694.242''' | |||
|701.583 | |||
|692.774 | |||
| -7.34, +1.47 | |||
|- | |||
|6 | |||
|<math>φ</math> | |||
| colspan="2" |'''833.090''' | |||
|824.281 | |||
|0, +8.81 | |||
|- | |||
| colspan="6" |... | |||
|- | |||
|''11'' | |||
|<math>(\sqrt[6]{φ})^11</math> | |||
|''1527.332'' | |||
| - | |||
|1525.864 | |||
| +1.47 | |||
|} | |||
{| class="wikitable" | |||
|+Lydian Electrum (11ed-<math>δ_s</math>) | |||
!Step | |||
!In terms of <math>δ_s</math> | |||
!Absolute Cents | |||
!Closest hyper-interval (¢) | |||
!Closest hypo-interval (¢) | |||
!Difference (¢) | |||
|- | |||
|1 | |||
|<math>\sqrt[11]{δ_s}</math> | |||
|'''138.715''' | |||
|140.317 | |||
|131.507 | |||
| -1.60, +7.21 | |||
|- | |||
|2 | |||
|<math>(\sqrt[11]{δ_s})^2</math> | |||
|'''277.425''' | |||
|280.633 | |||
|271.824 | |||
| -3.21, +5.60 | |||
|- | |||
|3 | |||
|<math>(\sqrt[11]{δ_s})^3</math> | |||
|'''416.145''' | |||
|420.950 | |||
|412.140 | |||
| -4.81, +4.01 | |||
|- | |||
|4 | |||
|<math>(\sqrt[11]{δ_s})^4</math> | |||
|'''554.860''' | |||
|561.267 | |||
|552.457 | |||
| -6.41, +2.40 | |||
|- | |||
|5 | |||
|<math>(\sqrt[11]{δ_s})^5</math> | |||
|'''693.575''' | |||
|701.583 | |||
|692.774 | |||
| -8.01, +0.80 | |||
|- | |||
|6 | |||
|<math>(\sqrt[11]{δ_s})^6</math> | |||
|'''832.289''' | |||
|833.090 | |||
|824.281 | |||
| -0.80, +8.01 | |||
|- | |||
|7 | |||
|<math>(\sqrt[11]{δ_s})^7</math> | |||
|'''971.004''' | |||
|973.407 | |||
|964.597 | |||
| -2.40, +6.41 | |||
|- | |||
|8 | |||
|<math>(\sqrt[11]{δ_s})^8</math> | |||
|'''1109.719''' | |||
|1113.724 | |||
|1104.914 | |||
| -4.01, +4.81 | |||
|- | |||
|9 | |||
|<math>(\sqrt[11]{δ_s})^9</math> | |||
|'''1248.434''' | |||
|1254.040 | |||
|1245.231 | |||
| -5.60, +3.21 | |||
|- | |||
|10 | |||
|<math>(\sqrt[11]{δ_s})^10</math> | |||
|'''1387.149''' | |||
|1394.357 | |||
|1385.547 | |||
| -7.21, +1.60 | |||
|- | |||
|11 | |||
|<math>δ_s</math> | |||
|'''1525.864''' | |||
| - | |||
|1525.864 | |||
|0 | |||
|} | |} |