Douglas Blumeyer's RTT How-To: Difference between revisions
Cmloegcmluin (talk | contribs) →multimaps & multicommas: intro |
Cmloegcmluin (talk | contribs) m consistency re: dimension(ality) |
||
Line 1,033: | Line 1,033: | ||
The order you list the pitches you're approximating with your temperament is not standardized; generally you increase them in size from left to right, though as you can see from the 2.9.5 and 2.15.7 examples above it can often be less surprising to list the numbers in prime limit order instead. Whatever order you choose, the important thing is that you stay consistent about it, because that's the only way any of your vectors and covectors are going to match up correctly! | The order you list the pitches you're approximating with your temperament is not standardized; generally you increase them in size from left to right, though as you can see from the 2.9.5 and 2.15.7 examples above it can often be less surprising to list the numbers in prime limit order instead. Whatever order you choose, the important thing is that you stay consistent about it, because that's the only way any of your vectors and covectors are going to match up correctly! | ||
[[File:Temperaments by rnd.png|400px|thumb|left|'''Figure 5d.''' Some temperaments by | [[File:Temperaments by rnd.png|400px|thumb|left|'''Figure 5d.''' Some temperaments by dimensionality, rank, and nullity]] | ||
Alright, here’s where things start to get pretty fun. 7-limit JI is 4D. We can no longer refer to our 5-limit PTS diagram for help. Maps and vectors here will have four terms; the new fourth term being for prime 7. So the map for 12-ET here is {{map|12 19 28 34}}. | Alright, here’s where things start to get pretty fun. 7-limit JI is 4D. We can no longer refer to our 5-limit PTS diagram for help. Maps and vectors here will have four terms; the new fourth term being for prime 7. So the map for 12-ET here is {{map|12 19 28 34}}. | ||
Line 1,402: | Line 1,402: | ||
But now try it with only 5 and one other of primes 2 or 3. Prime 5 takes you over 4 in both directions. But if you have only prime 2 otherwise, then you can only move up or down from there, so you’ll only cover every fourth vertical line through the tempered lattice. Or if you only had prime 3 otherwise, then you could only move left and right from there, you’d only cover every fourth horizontal line ''(see Figure 6c)''. | But now try it with only 5 and one other of primes 2 or 3. Prime 5 takes you over 4 in both directions. But if you have only prime 2 otherwise, then you can only move up or down from there, so you’ll only cover every fourth vertical line through the tempered lattice. Or if you only had prime 3 otherwise, then you could only move left and right from there, you’d only cover every fourth horizontal line ''(see Figure 6c)''. | ||
One day you might come across a multimap which has a term equal to zero. If you tried to interpret this term using the information here so far, you'd think it must generate <span><math>\frac 10</math></span>th of the tempered lattice. That's not easy to visualize or reason about. Does that mean it generates essentially infinity lattices? No, not really. More like the opposite. The question itself is somewhat undefined here. If anything, it's more like that combination of primes generates approximately ''none'' of the lattice. Because in this situation, the combination of primes whose multimap term is zero generates so little of the tempered lattice that it's completely missing | One day you might come across a multimap which has a term equal to zero. If you tried to interpret this term using the information here so far, you'd think it must generate <span><math>\frac 10</math></span>th of the tempered lattice. That's not easy to visualize or reason about. Does that mean it generates essentially infinity lattices? No, not really. More like the opposite. The question itself is somewhat undefined here. If anything, it's more like that combination of primes generates approximately ''none'' of the lattice. Because in this situation, the combination of primes whose multimap term is zero generates so little of the tempered lattice that it's completely missing one entire dimension of it, so it's an infinitesimal amount of it that it generates. For example, the 11-limit temperament 7&12&31 has multimap {{map|rank=3|0 1 1 4 4 -8 4 4 -12 -16}} and mapping {{vector|{{map|1 0 -4 0 -12}} {{map|0 1 4 0 8}} {{map|0 0 0 1 1}}}}; we can see from this how primes <span><math>(2,3,5)</math></span> can only generate a rank-2 cross-section of the full rank-3 lattice, because while 2 and 3 do the trick of generating that rank-2 part (exactly as they do in 5-limit meantone), prime 5 doesn't bring anything to the table here so that's all we get. | ||
We’ll look in more detail later at how exactly to best find these generators, once you know which primes to make them out of. | We’ll look in more detail later at how exactly to best find these generators, once you know which primes to make them out of. |