Lhearne (talk | contribs)
No edit summary
Lhearne (talk | contribs)
mNo edit summary
Line 17: Line 17:
[[SHEFKHED interval names]]
[[SHEFKHED interval names]]


SKULO notation and interval names (successor to SHEFKHED interval names): Sub-chroma accidentals as deviations from Pythagorean diatonic intervals:                                    S/s, Super/sub, septimal, [[64/63]]; K/k, Komma-Wide/komma-narrow, klassisch, [[81/80]]; U/u, Über/unter, undecimal, [[33/32]]; L\l, Large\little, [[896/891]]; O/o, On/off, Oceanic, [[45/44]].                Great for [[10edo]], [[15edo]], [[17edo]] and [[22edo]], where U=K=1 and S=0, [[24edo]] and [[31edo]], where U=S=1, and K=0, [[41edo]], [[46edo]], and [[53edo]], where U=2 and S=K=1; [[72edo]], where U=3, S=O=2, and K=L=1; and [[118edo]], where U=5, O=4, S=3, K=2, and L=1.   
SKULO notation and interval names (successor to SHEFKHED interval names): Sub-chroma accidentals as deviations from Pythagorean diatonic intervals:                                    S/s, Super/sub, septimal, [[64/63]]; K/k, Komma-Wide/komma-narrow, klassisch, [[81/80]]; U/u, Über/unter, undecimal, [[33/32]]; L\l, Large\little, [[896/891]]; O/o, On/off, Oceanic, [[45/44]].                Great for [[10edo]], [[15edo]], [[17edo]] and [[22edo]], where U=K=1 and S=0; [[24edo]] and [[31edo]], where U=S=1, and K=0; [[41edo]], [[46edo]], and [[53edo]], where U=2 and S=K=1; [[72edo]], where U=3, S=O=2, and K=L=1; and [[118edo]], where U=5, O=4, S=3, K=2, and L=1.   


Prima - an interval size measure for [[11-limit]] [[comma]] arithmetic: one step of [[12276edo]]; 1 prima represents a [[parimo]]; 20 prima to a [[schisma]], 220 prima to [[81/80]], and 240 prima to the [[Pythagorean comma]]; exactly 1023 prima to 1\[[12edo]], 558 prima to 1\[[22edo]], 396 prima to 1\[[31edo]], 170.5 prima to a [[morion]], and 10.23 prima to a [[cent]].
Prima - an interval size measure for [[11-limit]] [[comma]] arithmetic: one step of [[12276edo]]; 1 prima represents a [[parimo]]; 20 prima to a [[schisma]], 220 prima to [[81/80]], and 240 prima to the [[Pythagorean comma]]; exactly 1023 prima to 1\[[12edo]], 558 prima to 1\[[22edo]], 396 prima to 1\[[31edo]], 170.5 prima to a [[morion]], and 10.23 prima to a [[cent]].


Step-nested Scales (SNS) - generalization of [[MOS scales]] to n-dimensional [[regular temperaments]] (as n-SNS), where [[MOS scales]] are 2-SNS. SNS are symmetric.
Step-nested (SN) scales - generalization of [[MOS scales]] to n-dimensional [[regular temperaments]] (as ''n''-SN scales), where [[MOS scales]] are 2-SN scales. SN scales are symmetric.


[[Magic Tetrachords]]
[[Magic Tetrachords]]