Harmonotonic tuning: Difference between revisions

Cmloegcmluin (talk | contribs)
Gallery of monotonic tunings: 2nd wave of first major putting it out there
Cmloegcmluin (talk | contribs)
Line 90: Line 90:
{| class="wikitable"
{| class="wikitable"
|+ Caption text
|+ Caption text
!
! colspan="2" rowspan="2" |
!
! colspan="3" |tuning type
! colspan="3" |tuning type
|-
|-
!
!
! arithmetic
! arithmetic
rational  
rational  
Line 103: Line 100:
irrational
irrational
|-
|-
| rowspan="17" |'''tuning'''
! rowspan="17" |'''tuning'''
'''shape'''
'''shape'''
| rowspan="7" |'''decreasing'''
! rowspan="7" |'''decreasing'''
'''step size'''
'''step size'''
| '''harmonic series''' || '''shifted harmonic series'''  
|'''[[Overtone series|overtone series, or harmonic series]]'''||'''shifted harmonic series''' (± frequency)
(± frequency)
''(equivalent to AFS)''
 
''(equivalent to AFS)''  
| '''stretched/compressed harmonic series''' (exponentiated frequency, multiplied pitch) ''(equivalent to powharmonic series)''
| '''stretched/compressed harmonic series''' (exponentiated frequency, multiplied pitch) ''(equivalent to powharmonic series)''
|-
|-
|'''harmonic mode''' ''(equivalent to n-ODO)''
|'''[[Overtone scale#Over-n Scales|harmonic mode, or over-n scale]]''' ''(equivalent to n-ODO)''
|
|
|
|
Line 128: Line 123:
|
|
|
|
|c-powharmonic series exponent c
|'''c-powharmonic series''' exponent c
|-
|-
|
|
|
|
|b-logharmonic series base b
|'''b-logharmonic series''' base b
|-
|-
|n-ADO: arithmetic division of octave (equivalent to n-ODO)
|[[ADO|'''n-ADO:''' arithmetic division of octave]] ''(equivalent to n-ODO)''
|
|
|
|
|-
|-
| rowspan="3" |'''equal'''
! rowspan="3" |'''equal'''
'''step size'''
'''step size'''
| '''1D JI lattice'''  
|'''1D [[Harmonic Lattice Diagram|JI lattice]]'''
| rank-1 temperament || rowspan="3" |  
| [[Tour of Regular Temperaments#Equal temperaments .28Rank-1 temperaments.29|'''rank-1 temperament''']] || rowspan="3" |  
|-
|-
|
|
|n-EDp: n equal (pitch) divisions of interval p (e.g. 12-EDO) (equivalent to rank-1 temperament of p/n)
|'''n-EDp:''' n equal (pitch) divisions of interval p (e.g. 12-EDO) ''(equivalent to rank-1 temperament of p/n)''
|-
|-
|'''(n-)ASp:''' (n pitches of an) ambitonal sequence adding by p ''(equivalent to 1D JI lattice of p)''
|'''(n-)ASp:''' (n pitches of an) ambitonal sequence adding by p ''(equivalent to 1D JI lattice of p)''
|(n-)APSp: (n pitches of an) arithmetic pitch sequence adding by p (equivalent to rank-1 temperament with generator p)
|'''(n-)APSp:''' (n pitches of an) arithmetic pitch sequence adding by p ''(equivalent to rank-1 temperament with generator p)''
|-
|-
| rowspan="7" |'''increasing'''
! rowspan="7" |'''increasing'''
'''step size'''
'''step size'''
| subharmonic series || shifted subharmonic series (±Hz) (equivalent to ALS) || stretched/compressed subharmonic series (multiplied by cents) (equivalent to subpowharmonic series)
| '''[[wikipedia:Undertone_series|undertone series, or subharmonic series]]''' || '''shifted subharmonic series''' (± frequency) ''(equivalent to ALS)'' || '''stretched/compressed subharmonic series''' (exponentiated frequency, multiplied pitch) ''(equivalent to subpowharmonic series)''
|-
|-
|subharmonic mode (equivalent to n-UDO)
|'''[[Overtone scale#Next Steps|subharmonic mode, or under-n scale]]''' ''(equivalent to n-UDO)''
|
|
|
|
|-
|-
|n-UDp: n utonal divisions of interval p
|'''n-UDp:''' n utonal divisions of interval p
|n-ELDp: n equal length divisions of interval p
|'''n-ELDp:''' n equal length divisions of interval p
|
|
|-
|-
|(n-)USp: (n pitches of a) utonal sequence adding by p
|'''(n-)USp:''' (n pitches of a) utonal sequence adding by p
|(n-)ALSp: (n pitches of an) arithmetic length sequence adding by p
|'''(n-)ALSp:''' (n pitches of an) arithmetic length sequence adding by p
|
|
|-
|-
|
|
|
|
|c-subpowharmonic series exponent c
|'''c-subpowharmonic series''' exponent c
|-
|-
|
|
|
|
|b-sublogharmonic series base b
|'''b-sublogharmonic series''' base b
|-
|-
|EDL: equal division of length (equivalent to n-UDn)
|[[EDL|'''EDL:''' equal division of length]] ''(equivalent to n-UDn)''
|
|
|
|