19edt: Difference between revisions
Wikispaces>JosephRuhf **Imported revision 595262542 - Original comment: ** |
Wikispaces>JosephRuhf **Imported revision 602190196 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016- | : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016-12-14 16:07:16 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>602190196</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 10: | Line 10: | ||
[[@http://www.piano-stopper.de/html/onlypure_tuning.html|Bernhard Stopper's OnlyPure tuning]] | [[@http://www.piano-stopper.de/html/onlypure_tuning.html|Bernhard Stopper's OnlyPure tuning]] | ||
Note: 19 equal divisions of the tritave is not a xenharmonic tuning; it is a slightly stretched version (with an octave of 1201.2 cents) of the normal [[@12edo|12-tone scale]]. | Note: 19 equal divisions of the tritave is not a "real" xenharmonic tuning; it is a slightly stretched version (with an octave of 1201.2 cents) of the normal [[@12edo|12-tone scale]]. Although it is really just the normal "harmonic" tuning framed in a tritave equivalence, the "default" approach to it is as the tritave twin of godzilla temperament (with a generator of 400.4 cents and a 3:1 ratio superdiatonic scale), which has little connection to standard 12-tone practice in spite of using the 12-tone interval set. Beyond this, it is also the tritave twin of sensi or meantone temperament <span style="background-color: rgba(255,255,255,0);">(with a generator of 700.7 or </span>1101.1 <span style="background-color: rgba(255,255,255,0);">cents and a 2:1 ratio superdiatonic scale)</span>.</pre></div> | ||
<span style="background-color: rgba(255,255,255,0);">cents and a 2:1 ratio superdiatonic scale)</span>.</pre></div> | |||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>19ED3</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Division of 3/1 into 19 equal parts"></a><!-- ws:end:WikiTextHeadingRule:0 -->Division of 3/1 into 19 equal parts</h1> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>19ED3</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Division of 3/1 into 19 equal parts"></a><!-- ws:end:WikiTextHeadingRule:0 -->Division of 3/1 into 19 equal parts</h1> | ||
Line 17: | Line 16: | ||
<a class="wiki_link_ext" href="http://www.piano-stopper.de/html/onlypure_tuning.html" rel="nofollow" target="_blank">Bernhard Stopper's OnlyPure tuning</a><br /> | <a class="wiki_link_ext" href="http://www.piano-stopper.de/html/onlypure_tuning.html" rel="nofollow" target="_blank">Bernhard Stopper's OnlyPure tuning</a><br /> | ||
<br /> | <br /> | ||
Note: 19 equal divisions of the tritave is not a xenharmonic tuning; it is a slightly stretched version (with an octave of 1201.2 cents) of the normal <a class="wiki_link" href="/12edo" target="_blank">12-tone scale</a>. | Note: 19 equal divisions of the tritave is not a &quot;real&quot; xenharmonic tuning; it is a slightly stretched version (with an octave of 1201.2 cents) of the normal <a class="wiki_link" href="/12edo" target="_blank">12-tone scale</a>. Although it is really just the normal &quot;harmonic&quot; tuning framed in a tritave equivalence, the &quot;default&quot; approach to it is as the tritave twin of godzilla temperament (with a generator of 400.4 cents and a 3:1 ratio superdiatonic scale), which has little connection to standard 12-tone practice in spite of using the 12-tone interval set. Beyond this, it is also the tritave twin of sensi or meantone temperament <span style="background-color: rgba(255,255,255,0);">(with a generator of 700.7 or </span>1101.1 <span style="background-color: rgba(255,255,255,0);">cents and a 2:1 ratio superdiatonic scale)</span>.</body></html></pre></div> | ||
<span style="background-color: rgba(255,255,255,0);">cents and a 2:1 ratio superdiatonic scale)</span>.</body></html></pre></div> |