16edo: Difference between revisions

Wikispaces>guest
**Imported revision 189131925 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 189144551 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2010-12-18 16:46:15 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-12-18 19:47:31 UTC</tt>.<br>
: The original revision id was <tt>189131925</tt>.<br>
: The original revision id was <tt>189144551</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
[[image:http://ronsword.com/DSgoldsmith_piece.jpg width="1120" height="380"]]
----


16-edo equal temperament is the division of the octave into sixteen narrow chromatic semitones each of 75 cents exactly. It is not especially good at representing most low-integer musical intervals, but it has a 7/4 which is six cents sharp, and a 5/4 which is eleven cents flat. Four steps of it gives the 300 cent minor third interval identical to that of 12-edo, giving it four diminished seventh chords exactly like those of 12-edo, and a diminished triad on each scale step.
16-edo equal temperament is the division of the octave into sixteen narrow chromatic semitones each of 75 cents exactly. It is not especially good at representing most low-integer musical intervals, but it has a 7/4 which is six cents sharp, and a 5/4 which is eleven cents flat. Four steps of it gives the 300 cent minor third interval identical to that of 12-edo, giving it four diminished seventh chords exactly like those of 12-edo, and a diminished triad on each scale step.
Line 14: Line 12:
If we take the 300-cent minor third as an approximation of the harmonic 19th (19/16, approximately 297.5 cents), that adds another overtone which can combine with the approximation of the harmonic seventh to form a 16:19:28 triad. The interval between the 28th &amp; 19th overtones, 28:19, measures approximately 671.3 cents, which is 3.7 cents away from 16edo's "narrow fifth". Example on Goldsmith board: [[image:http://www.ronsword.com/161928%20copy.jpg width="158" height="92"]]Another voicing for this chord is 14:16:19, which features 19:14 as the outer interval (528.7 cents just, 525.0 cents in 16edo). A perhaps more consonant open voicing is 7:16:19.
If we take the 300-cent minor third as an approximation of the harmonic 19th (19/16, approximately 297.5 cents), that adds another overtone which can combine with the approximation of the harmonic seventh to form a 16:19:28 triad. The interval between the 28th &amp; 19th overtones, 28:19, measures approximately 671.3 cents, which is 3.7 cents away from 16edo's "narrow fifth". Example on Goldsmith board: [[image:http://www.ronsword.com/161928%20copy.jpg width="158" height="92"]]Another voicing for this chord is 14:16:19, which features 19:14 as the outer interval (528.7 cents just, 525.0 cents in 16edo). A perhaps more consonant open voicing is 7:16:19.


[[image:http://ronsword.com/DSgoldsmith_piece.jpg width="1120" height="380"]]
----
=Hexadecaphonic Octave Theory=  
=Hexadecaphonic Octave Theory=  
The scale supports the diminished temperament with its 1/4 octave period, though its generator size, equal to its step size of 75 cents, is smaller than ideal. Its very flat "blown fifth" of 675 cents means it works as a mavila temperament tuning. For a 16-edo version of Indonesian music, four small steps of 225 cents and one large one of 300 cents gives a [[MOSScales|MOS]] version of the Slendro scale, and five small steps of 150 cents with two large ones of 225 steps a Pelog-like MOS. The temperament could be popular for its easy manageability of 150 cent intervals 3/4, 9/4 and 21/4-tones. The 25 cent difference in the steps can have a similar effect the [[scales of Olympos have]] with buried enharmonic genera.
The scale supports the diminished temperament with its 1/4 octave period, though its generator size, equal to its step size of 75 cents, is smaller than ideal. Its very flat "blown fifth" of 675 cents means it works as a mavila temperament tuning. For a 16-edo version of Indonesian music, four small steps of 225 cents and one large one of 300 cents gives a [[MOSScales|MOS]] version of the Slendro scale, and five small steps of 150 cents with two large ones of 225 steps a Pelog-like MOS. The temperament could be popular for its easy manageability of 150 cent intervals 3/4, 9/4 and 21/4-tones. The 25 cent difference in the steps can have a similar effect the [[scales of Olympos have]] with buried enharmonic genera.
Line 93: Line 93:
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;16edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:12:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt;&lt;a href="#Hexadecaphonic Octave Theory"&gt;Hexadecaphonic Octave Theory&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt; | &lt;a href="#toc1"&gt; &lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt; | &lt;a href="#Hexadecaphonic Notation:"&gt;Hexadecaphonic Notation:&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt; | &lt;a href="#Armodue theory"&gt;Armodue theory&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt; | &lt;a href="#External links"&gt;External links&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:17 --&gt;&lt;!-- ws:start:WikiTextTocRule:18: --&gt; | &lt;a href="#Compositions"&gt;Compositions&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;16edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:12:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt;&lt;a href="#Hexadecaphonic Octave Theory"&gt;Hexadecaphonic Octave Theory&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt; | &lt;a href="#toc1"&gt; &lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt; | &lt;a href="#Hexadecaphonic Notation:"&gt;Hexadecaphonic Notation:&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt; | &lt;a href="#Armodue theory"&gt;Armodue theory&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt; | &lt;a href="#External links"&gt;External links&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:17 --&gt;&lt;!-- ws:start:WikiTextTocRule:18: --&gt; | &lt;a href="#Compositions"&gt;Compositions&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt;
&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;!-- ws:start:WikiTextRemoteImageRule:21:&amp;lt;img src=&amp;quot;http://ronsword.com/DSgoldsmith_piece.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 380px; width: 1120px;&amp;quot; /&amp;gt; --&gt;&lt;img src="http://ronsword.com/DSgoldsmith_piece.jpg" alt="external image DSgoldsmith_piece.jpg" title="external image DSgoldsmith_piece.jpg" style="height: 380px; width: 1120px;" /&gt;&lt;!-- ws:end:WikiTextRemoteImageRule:21 --&gt;&lt;br /&gt;
&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;br /&gt;
&lt;hr /&gt;
&lt;br /&gt;
16-edo equal temperament is the division of the octave into sixteen narrow chromatic semitones each of 75 cents exactly. It is not especially good at representing most low-integer musical intervals, but it has a 7/4 which is six cents sharp, and a 5/4 which is eleven cents flat. Four steps of it gives the 300 cent minor third interval identical to that of 12-edo, giving it four diminished seventh chords exactly like those of 12-edo, and a diminished triad on each scale step.&lt;br /&gt;
16-edo equal temperament is the division of the octave into sixteen narrow chromatic semitones each of 75 cents exactly. It is not especially good at representing most low-integer musical intervals, but it has a 7/4 which is six cents sharp, and a 5/4 which is eleven cents flat. Four steps of it gives the 300 cent minor third interval identical to that of 12-edo, giving it four diminished seventh chords exactly like those of 12-edo, and a diminished triad on each scale step.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
If we take the 300-cent minor third as an approximation of the harmonic 19th (19/16, approximately 297.5 cents), that adds another overtone which can combine with the approximation of the harmonic seventh to form a 16:19:28 triad. The interval between the 28th &amp;amp; 19th overtones, 28:19, measures approximately 671.3 cents, which is 3.7 cents away from 16edo's &amp;quot;narrow fifth&amp;quot;. Example on Goldsmith board: &lt;!-- ws:start:WikiTextRemoteImageRule:22:&amp;lt;img src=&amp;quot;http://www.ronsword.com/161928%20copy.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 92px; width: 158px;&amp;quot; /&amp;gt; --&gt;&lt;img src="http://www.ronsword.com/161928%20copy.jpg" alt="external image 161928%20copy.jpg" title="external image 161928%20copy.jpg" style="height: 92px; width: 158px;" /&gt;&lt;!-- ws:end:WikiTextRemoteImageRule:22 --&gt;Another voicing for this chord is 14:16:19, which features 19:14 as the outer interval (528.7 cents just, 525.0 cents in 16edo). A perhaps more consonant open voicing is 7:16:19.&lt;br /&gt;
If we take the 300-cent minor third as an approximation of the harmonic 19th (19/16, approximately 297.5 cents), that adds another overtone which can combine with the approximation of the harmonic seventh to form a 16:19:28 triad. The interval between the 28th &amp;amp; 19th overtones, 28:19, measures approximately 671.3 cents, which is 3.7 cents away from 16edo's &amp;quot;narrow fifth&amp;quot;. Example on Goldsmith board: &lt;!-- ws:start:WikiTextRemoteImageRule:21:&amp;lt;img src=&amp;quot;http://www.ronsword.com/161928%20copy.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 92px; width: 158px;&amp;quot; /&amp;gt; --&gt;&lt;img src="http://www.ronsword.com/161928%20copy.jpg" alt="external image 161928%20copy.jpg" title="external image 161928%20copy.jpg" style="height: 92px; width: 158px;" /&gt;&lt;!-- ws:end:WikiTextRemoteImageRule:21 --&gt;Another voicing for this chord is 14:16:19, which features 19:14 as the outer interval (528.7 cents just, 525.0 cents in 16edo). A perhaps more consonant open voicing is 7:16:19.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextRemoteImageRule:22:&amp;lt;img src=&amp;quot;http://ronsword.com/DSgoldsmith_piece.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 380px; width: 1120px;&amp;quot; /&amp;gt; --&gt;&lt;img src="http://ronsword.com/DSgoldsmith_piece.jpg" alt="external image DSgoldsmith_piece.jpg" title="external image DSgoldsmith_piece.jpg" style="height: 380px; width: 1120px;" /&gt;&lt;!-- ws:end:WikiTextRemoteImageRule:22 --&gt;&lt;br /&gt;
&lt;hr /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Hexadecaphonic Octave Theory"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Hexadecaphonic Octave Theory&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Hexadecaphonic Octave Theory"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Hexadecaphonic Octave Theory&lt;/h1&gt;
  The scale supports the diminished temperament with its 1/4 octave period, though its generator size, equal to its step size of 75 cents, is smaller than ideal. Its very flat &amp;quot;blown fifth&amp;quot; of 675 cents means it works as a mavila temperament tuning. For a 16-edo version of Indonesian music, four small steps of 225 cents and one large one of 300 cents gives a &lt;a class="wiki_link" href="/MOSScales"&gt;MOS&lt;/a&gt; version of the Slendro scale, and five small steps of 150 cents with two large ones of 225 steps a Pelog-like MOS. The temperament could be popular for its easy manageability of 150 cent intervals 3/4, 9/4 and 21/4-tones. The 25 cent difference in the steps can have a similar effect the &lt;a class="wiki_link" href="/scales%20of%20Olympos%20have"&gt;scales of Olympos have&lt;/a&gt; with buried enharmonic genera.&lt;br /&gt;
  The scale supports the diminished temperament with its 1/4 octave period, though its generator size, equal to its step size of 75 cents, is smaller than ideal. Its very flat &amp;quot;blown fifth&amp;quot; of 675 cents means it works as a mavila temperament tuning. For a 16-edo version of Indonesian music, four small steps of 225 cents and one large one of 300 cents gives a &lt;a class="wiki_link" href="/MOSScales"&gt;MOS&lt;/a&gt; version of the Slendro scale, and five small steps of 150 cents with two large ones of 225 steps a Pelog-like MOS. The temperament could be popular for its easy manageability of 150 cent intervals 3/4, 9/4 and 21/4-tones. The 25 cent difference in the steps can have a similar effect the &lt;a class="wiki_link" href="/scales%20of%20Olympos%20have"&gt;scales of Olympos have&lt;/a&gt; with buried enharmonic genera.&lt;br /&gt;