16edo: Difference between revisions

Wikispaces>hstraub
**Imported revision 241737375 - Original comment: **
Wikispaces>igliashon
**Imported revision 242219447 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:hstraub|hstraub]] and made on <tt>2011-07-18 03:09:53 UTC</tt>.<br>
: This revision was by author [[User:igliashon|igliashon]] and made on <tt>2011-07-21 00:47:25 UTC</tt>.<br>
: The original revision id was <tt>241737375</tt>.<br>
: The original revision id was <tt>242219447</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 11: Line 11:
**16edo** is the [[equal division of the octave]] into sixteen narrow chromatic semitones each of 75 [[cent]]s exactly. It is not especially good at representing most low-integer musical intervals, but it has a [[7_4|7/4]] which is six cents sharp, and a [[5_4|5/4]] which is eleven cents flat. Four steps of it gives the 300 cent minor third interval identical to that of 12-edo, giving it four diminished seventh chords exactly like those of [[12edo]], and a diminished triad on each scale step.
**16edo** is the [[equal division of the octave]] into sixteen narrow chromatic semitones each of 75 [[cent]]s exactly. It is not especially good at representing most low-integer musical intervals, but it has a [[7_4|7/4]] which is six cents sharp, and a [[5_4|5/4]] which is eleven cents flat. Four steps of it gives the 300 cent minor third interval identical to that of 12-edo, giving it four diminished seventh chords exactly like those of [[12edo]], and a diminished triad on each scale step.


|| Degree || Cents || Approximate
Ratios* || Interval Name ||
|| 0 || 0 || 1/1 ||  ||
|| 1 || 75 || 28/27, 27/26 ||  ||
|| 2 || 150 || 35/32 ||  ||
|| 3 || 225 || 8/7 ||  ||
|| 4 || 300 || 19/16, 32/27 ||  ||
|| 5 || 375 || 5/4, 16/13 ||  ||
|| 6 || 450 || 13/10 ||  ||
|| 7 || 525 || 27/20, 70/52, 26/19 ||  ||
|| 8 || 600 || 7/5, 10/7 ||  ||
|| 9 || 675 || 40/27, 52/35, 19/13 ||  ||
|| 10 || 750 || 20/13 ||  ||
|| 11 || 825 || 8/5, 13/8 ||  ||
|| 12 || 900 || 27/16, 32/19 ||  ||
|| 13 || 975 || 7/4 ||  ||
|| 14 || 1050 || 64/35 ||  ||
|| 15 || 1125 || 27/14, 52/27 ||  ||
|| 16 || 1200 || 2/1 ||  ||
*based on treating 16-EDO as a 2.5.7.13.19.27 subgroup temperament; other approaches are possible


=Hexadecaphonic Octave Theory=  
=Hexadecaphonic Octave Theory=  
Line 116: Line 136:
&lt;strong&gt;16edo&lt;/strong&gt; is the &lt;a class="wiki_link" href="/equal%20division%20of%20the%20octave"&gt;equal division of the octave&lt;/a&gt; into sixteen narrow chromatic semitones each of 75 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s exactly. It is not especially good at representing most low-integer musical intervals, but it has a &lt;a class="wiki_link" href="/7_4"&gt;7/4&lt;/a&gt; which is six cents sharp, and a &lt;a class="wiki_link" href="/5_4"&gt;5/4&lt;/a&gt; which is eleven cents flat. Four steps of it gives the 300 cent minor third interval identical to that of 12-edo, giving it four diminished seventh chords exactly like those of &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;, and a diminished triad on each scale step.&lt;br /&gt;
&lt;strong&gt;16edo&lt;/strong&gt; is the &lt;a class="wiki_link" href="/equal%20division%20of%20the%20octave"&gt;equal division of the octave&lt;/a&gt; into sixteen narrow chromatic semitones each of 75 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s exactly. It is not especially good at representing most low-integer musical intervals, but it has a &lt;a class="wiki_link" href="/7_4"&gt;7/4&lt;/a&gt; which is six cents sharp, and a &lt;a class="wiki_link" href="/5_4"&gt;5/4&lt;/a&gt; which is eleven cents flat. Four steps of it gives the 300 cent minor third interval identical to that of 12-edo, giving it four diminished seventh chords exactly like those of &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;, and a diminished triad on each scale step.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;Degree&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Cents&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Approximate&lt;br /&gt;
Ratios*&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Interval Name&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;75&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;28/27, 27/26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;150&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;35/32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;225&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;300&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19/16, 32/27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;375&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/4, 16/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;450&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;525&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;27/20, 70/52, 26/19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;600&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/5, 10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;675&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;40/27, 52/35, 19/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;750&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;825&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/5, 13/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;900&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;27/16, 32/19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;975&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1050&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;64/35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1125&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;27/14, 52/27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
*based on treating 16-EDO as a 2.5.7.13.19.27 subgroup temperament; other approaches are possible&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Hexadecaphonic Octave Theory"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Hexadecaphonic Octave Theory&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Hexadecaphonic Octave Theory"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Hexadecaphonic Octave Theory&lt;/h1&gt;
Line 126: Line 333:
In 16-tone, because of the 25 cent difference in the steps from 100 in 12-tone, a western &amp;quot;twelve tone ear&amp;quot; hears dissonance with more complexity and less familiarity than even &lt;a class="wiki_link" href="/24edo"&gt;24-tone&lt;/a&gt;, yet within a more manageable number of tones and a strange familiarity - the diminished family - making 16-edo a truly xenharmonic system.&lt;br /&gt;
In 16-tone, because of the 25 cent difference in the steps from 100 in 12-tone, a western &amp;quot;twelve tone ear&amp;quot; hears dissonance with more complexity and less familiarity than even &lt;a class="wiki_link" href="/24edo"&gt;24-tone&lt;/a&gt;, yet within a more manageable number of tones and a strange familiarity - the diminished family - making 16-edo a truly xenharmonic system.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
If we take the 300-cent minor third as an approximation of the harmonic 19th (&lt;a class="wiki_link" href="/19_16"&gt;19/16&lt;/a&gt;, approximately 297.5 cents), that adds another overtone which can combine with the approximation of the harmonic seventh to form a 16:19:28 triad. The interval between the 28th &amp;amp; 19th overtones, 28:19, measures approximately 671.3 cents, which is 3.7 cents away from 16edo's &amp;quot;narrow fifth&amp;quot;. Example on Goldsmith board: &lt;!-- ws:start:WikiTextRemoteImageRule:276:&amp;lt;img src=&amp;quot;http://www.ronsword.com/161928%20copy.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 92px; width: 158px;&amp;quot; /&amp;gt; --&gt;&lt;img src="http://www.ronsword.com/161928%20copy.jpg" alt="external image 161928%20copy.jpg" title="external image 161928%20copy.jpg" style="height: 92px; width: 158px;" /&gt;&lt;!-- ws:end:WikiTextRemoteImageRule:276 --&gt;Another voicing for this chord is 14:16:19, which features 19:14 as the outer interval (528.7 cents just, 525.0 cents in 16edo). A perhaps more consonant open voicing is 7:16:19.&lt;br /&gt;
If we take the 300-cent minor third as an approximation of the harmonic 19th (&lt;a class="wiki_link" href="/19_16"&gt;19/16&lt;/a&gt;, approximately 297.5 cents), that adds another overtone which can combine with the approximation of the harmonic seventh to form a 16:19:28 triad. The interval between the 28th &amp;amp; 19th overtones, 28:19, measures approximately 671.3 cents, which is 3.7 cents away from 16edo's &amp;quot;narrow fifth&amp;quot;. Example on Goldsmith board: &lt;!-- ws:start:WikiTextRemoteImageRule:458:&amp;lt;img src=&amp;quot;http://www.ronsword.com/161928%20copy.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 92px; width: 158px;&amp;quot; /&amp;gt; --&gt;&lt;img src="http://www.ronsword.com/161928%20copy.jpg" alt="external image 161928%20copy.jpg" title="external image 161928%20copy.jpg" style="height: 92px; width: 158px;" /&gt;&lt;!-- ws:end:WikiTextRemoteImageRule:458 --&gt;Another voicing for this chord is 14:16:19, which features 19:14 as the outer interval (528.7 cents just, 525.0 cents in 16edo). A perhaps more consonant open voicing is 7:16:19.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextRemoteImageRule:277:&amp;lt;img src=&amp;quot;http://ronsword.com/DSgoldsmith_piece.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 342px; width: 1008px;&amp;quot; /&amp;gt; --&gt;&lt;img src="http://ronsword.com/DSgoldsmith_piece.jpg" alt="external image DSgoldsmith_piece.jpg" title="external image DSgoldsmith_piece.jpg" style="height: 342px; width: 1008px;" /&gt;&lt;!-- ws:end:WikiTextRemoteImageRule:277 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextRemoteImageRule:459:&amp;lt;img src=&amp;quot;http://ronsword.com/DSgoldsmith_piece.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 342px; width: 1008px;&amp;quot; /&amp;gt; --&gt;&lt;img src="http://ronsword.com/DSgoldsmith_piece.jpg" alt="external image DSgoldsmith_piece.jpg" title="external image DSgoldsmith_piece.jpg" style="height: 342px; width: 1008px;" /&gt;&lt;!-- ws:end:WikiTextRemoteImageRule:459 --&gt;&lt;br /&gt;
&lt;hr /&gt;
&lt;hr /&gt;
In 16-edo diatonic scales are dissonant because of the 25 cent raised superfourth in conjunction with the 25 cent subtracted fifth / poor 3/2 approximation. The septimal semi diminished fourth can be more desirable. Perhaps using Moment of Symmetry Scales an alternative temperament families like the &amp;quot;Anti-Diatonic&amp;quot; Mavila (which reverses step sizes of diatonic), Diminished, Happy, Rice, Grumpy, Mosh, Magic, Lemba, Cynder, and Decatonic can be more interesting and suitable:&lt;br /&gt;
In 16-edo diatonic scales are dissonant because of the 25 cent raised superfourth in conjunction with the 25 cent subtracted fifth / poor 3/2 approximation. The septimal semi diminished fourth can be more desirable. Perhaps using Moment of Symmetry Scales an alternative temperament families like the &amp;quot;Anti-Diatonic&amp;quot; Mavila (which reverses step sizes of diatonic), Diminished, Happy, Rice, Grumpy, Mosh, Magic, Lemba, Cynder, and Decatonic can be more interesting and suitable:&lt;br /&gt;
Line 444: Line 651:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="External links"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;External links&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="External links"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;External links&lt;/h1&gt;
  &lt;!-- ws:start:WikiTextRemoteImageRule:278:&amp;lt;img src=&amp;quot;http://ronsword.com/images/ESG_sm.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 161px; width: 120px;&amp;quot; /&amp;gt; --&gt;&lt;img src="http://ronsword.com/images/ESG_sm.jpg" alt="external image ESG_sm.jpg" title="external image ESG_sm.jpg" style="height: 161px; width: 120px;" /&gt;&lt;!-- ws:end:WikiTextRemoteImageRule:278 --&gt;&lt;br /&gt;
  &lt;!-- ws:start:WikiTextRemoteImageRule:460:&amp;lt;img src=&amp;quot;http://ronsword.com/images/ESG_sm.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 161px; width: 120px;&amp;quot; /&amp;gt; --&gt;&lt;img src="http://ronsword.com/images/ESG_sm.jpg" alt="external image ESG_sm.jpg" title="external image ESG_sm.jpg" style="height: 161px; width: 120px;" /&gt;&lt;!-- ws:end:WikiTextRemoteImageRule:460 --&gt;&lt;br /&gt;
Sword, Ronald. &amp;quot;Hexadecaphonic Scales for Guitar.&amp;quot; IAAA Press, UK-USA. First Ed: Feb, 2010. (superfourth tuning).&lt;br /&gt;
Sword, Ronald. &amp;quot;Hexadecaphonic Scales for Guitar.&amp;quot; IAAA Press, UK-USA. First Ed: Feb, 2010. (superfourth tuning).&lt;br /&gt;
Sword, Ronald. &amp;quot;Esadekaphonic Scales for Guitar.&amp;quot; IAAA Press, UK-USA. First Ed: April, 2009. (semi-diminished fourth tuning)&lt;br /&gt;
Sword, Ronald. &amp;quot;Esadekaphonic Scales for Guitar.&amp;quot; IAAA Press, UK-USA. First Ed: April, 2009. (semi-diminished fourth tuning)&lt;br /&gt;