166edo: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 269750516 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 300719332 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-10-28 20:45:28 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-02-11 02:03:34 UTC</tt>.<br>
: The original revision id was <tt>269750516</tt>.<br>
: The original revision id was <tt>300719332</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 10: Line 10:
Its prime factorization is 166 = [[2edo|2]] * [[83edo|83]].
Its prime factorization is 166 = [[2edo|2]] * [[83edo|83]].


166edo (as 83edo) contains a very good approximation of the [[7_4|harmonic 7th]]. It's 0.15121 [[cent]] close to the just interval 7:4.
166edo (as 83edo) contains a very good approximation of the [[7_4|harmonic 7th]]. It's 0.15121 [[cent]] flat of the just interval 7:4.


== Scales ==
== Scales ==
Line 19: Line 19:
Its prime factorization is 166 = &lt;a class="wiki_link" href="/2edo"&gt;2&lt;/a&gt; * &lt;a class="wiki_link" href="/83edo"&gt;83&lt;/a&gt;.&lt;br /&gt;
Its prime factorization is 166 = &lt;a class="wiki_link" href="/2edo"&gt;2&lt;/a&gt; * &lt;a class="wiki_link" href="/83edo"&gt;83&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
166edo (as 83edo) contains a very good approximation of the &lt;a class="wiki_link" href="/7_4"&gt;harmonic 7th&lt;/a&gt;. It's 0.15121 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt; close to the just interval 7:4.&lt;br /&gt;
166edo (as 83edo) contains a very good approximation of the &lt;a class="wiki_link" href="/7_4"&gt;harmonic 7th&lt;/a&gt;. It's 0.15121 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt; flat of the just interval 7:4.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt; Scales &lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt; Scales &lt;/h2&gt;
&lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link" href="/prisun"&gt;prisun&lt;/a&gt;&lt;/li&gt;&lt;/ul&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link" href="/prisun"&gt;prisun&lt;/a&gt;&lt;/li&gt;&lt;/ul&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>