Mathematics of MOS: Difference between revisions

Dw0391 (talk | contribs)
m Fixed "proper" and "semiconvergents" Wikipedia links in "Mathematical Properties of MOS", and "modular inverses" Wikipedia link in "Classification of MOS", according to Wikipedia link standard utilised in the document
Line 20: Line 20:
Let us represent the period as 1. This would be the logarithm base 2 of 2 if the period is an octave, or in general we can measure intervals by the log base P when P is the period. Suppose the fractions a/b and c/d are a [[Wikipedia:Farey_sequence#Farey_neighbours|Farey pair]], meaning that a/b < c/d and bc - ad = 1. If g = (1-t)(a/b) + t(c/d) for 0 ? t ? 1, then when t = 0, the scale generated by g will consist of an equal division of 1 (representing P) into steps of size 1/b, and when t = 1 into steps of size 1/d. In between, when t = b/(b + d), we obtain a generator equal to the [[Wikipedia:Mediant_%28mathematics%29|mediant]] (a + c)/(b + d) and which will divide the period into b+d equal steps. For all other values a/b < g < c/d we obtain two different sizes of steps, the small steps s, and the large steps L, with the total number of steps b+d, and these scales are the MOS associated to the Farey pair. When g is between a/b and (a + c)/(b + d) there will be b large steps and d small steps, and when it is between (a + c)/(b + d) and c/d, d large steps and b small ones.
Let us represent the period as 1. This would be the logarithm base 2 of 2 if the period is an octave, or in general we can measure intervals by the log base P when P is the period. Suppose the fractions a/b and c/d are a [[Wikipedia:Farey_sequence#Farey_neighbours|Farey pair]], meaning that a/b < c/d and bc - ad = 1. If g = (1-t)(a/b) + t(c/d) for 0 ? t ? 1, then when t = 0, the scale generated by g will consist of an equal division of 1 (representing P) into steps of size 1/b, and when t = 1 into steps of size 1/d. In between, when t = b/(b + d), we obtain a generator equal to the [[Wikipedia:Mediant_%28mathematics%29|mediant]] (a + c)/(b + d) and which will divide the period into b+d equal steps. For all other values a/b < g < c/d we obtain two different sizes of steps, the small steps s, and the large steps L, with the total number of steps b+d, and these scales are the MOS associated to the Farey pair. When g is between a/b and (a + c)/(b + d) there will be b large steps and d small steps, and when it is between (a + c)/(b + d) and c/d, d large steps and b small ones.


While all the scales constructed by generators g with a/b < g < c/d with the exception of the mediant which gives an equal temperament are MOS, not all the scales are [[Wikipedia:Rothenberg_propriety proper] in the sense of Rothenberg. The ''range of propriety'' for MOS is (2a + c)/(2b + d) ≤ g ≤ (a + 2c)/(b + 2d), where MOS coming from a Farey pair (a/b, c/d) are proper when in this range, and improper (unless the MOS has only one small step) when out of it. If (2a + c)/(2b + d) < g < (a + 2c)/(b + 2d), then the scales are strictly proper. Hence the diatonic scale in 12et, with generator 7/12, is proper but not strictly proper since starting from the pair (1/2, 3/5) we find the range of propriety for these seven-note MOS to be [5/9, 7/12].
While all the scales constructed by generators g with a/b < g < c/d with the exception of the mediant which gives an equal temperament are MOS, not all the scales are [[Wikipedia:Rothenberg_propriety|proper]] in the sense of Rothenberg. The ''range of propriety'' for MOS is (2a + c)/(2b + d) ≤ g ≤ (a + 2c)/(b + 2d), where MOS coming from a Farey pair (a/b, c/d) are proper when in this range, and improper (unless the MOS has only one small step) when out of it. If (2a + c)/(2b + d) < g < (a + 2c)/(b + 2d), then the scales are strictly proper. Hence the diatonic scale in 12et, with generator 7/12, is proper but not strictly proper since starting from the pair (1/2, 3/5) we find the range of propriety for these seven-note MOS to be [5/9, 7/12].


Given a generator g, we can find MOS for g with period 1 by means of the [[Wikipedia:Continued_fraction#Semiconvergents semiconvergents] to g. A pair of successive semiconvergents have the property that they define a Farey pair, and when g is contained in the pair, that is, a/b < g < c/d, we have defined a MOS for g with b+d as the number of notes in the MOS, with b notes of one size and d of the other.
Given a generator g, we can find MOS for g with period 1 by means of the [[Wikipedia:Continued_fraction#Semiconvergents|semiconvergents]] to g. A pair of successive semiconvergents have the property that they define a Farey pair, and when g is contained in the pair, that is, a/b < g < c/d, we have defined a MOS for g with b+d as the number of notes in the MOS, with b notes of one size and d of the other.


For example, suppose we want MOS for 1/4-comma meantone. The generator will then be log2(5)/4, which has semiconvergents 1/2, 2/3, 3/5, 4/7, 7/12, 11/19, 18/31, 29/50, 47/81, 65/112... If we settle on 31 as a good size for our MOS, we see 18/31 is the mediant between the Farey pair 11/19 and 7/12, for which the range of strict propriety is 29/50 < x < 25/43. Since g is in that range and not equal to 18/31, we will get a strictly proper MOS.
For example, suppose we want MOS for 1/4-comma meantone. The generator will then be log2(5)/4, which has semiconvergents 1/2, 2/3, 3/5, 4/7, 7/12, 11/19, 18/31, 29/50, 47/81, 65/112... If we settle on 31 as a good size for our MOS, we see 18/31 is the mediant between the Farey pair 11/19 and 7/12, for which the range of strict propriety is 29/50 < x < 25/43. Since g is in that range and not equal to 18/31, we will get a strictly proper MOS.
Line 50: Line 50:
Alternatively, we could give a mediant for a Farey pair associated to the MOS, where this mediant is less than any generator for the MOS. In other words, we use the right hand part of the Farey pair interval, which means we must replace g with 1-g and use the complementary pair if g is in the left hand side. This method is rarely used in discussions, however.
Alternatively, we could give a mediant for a Farey pair associated to the MOS, where this mediant is less than any generator for the MOS. In other words, we use the right hand part of the Farey pair interval, which means we must replace g with 1-g and use the complementary pair if g is in the left hand side. This method is rarely used in discussions, however.


The two systems are equivalent; in the Algorithms section you will find code for routines starting from the mediant and going to the Ls pair (the "Ls" routine) and for starting from an Ls pair and going to the mediant (the "medi" routine.) The Ls routine uses [[Wikipedia:Modular_multiplicative_inverse modular inverses], whereas the medi routine uses continued fractions.
The two systems are equivalent; in the Algorithms section you will find code for routines starting from the mediant and going to the Ls pair (the "Ls" routine) and for starting from an Ls pair and going to the mediant (the "medi" routine.) The Ls routine uses [[Wikipedia:Modular_multiplicative_inverse|modular inverses]], whereas the medi routine uses continued fractions.


If the period is assumed to be 2^(1/n) for some integer n, we can give instead the total number of large and small steps in the octave, instead of just the period, and this is commonly done. In this case, GCD(L, s) gives the number of periods in an octave.
If the period is assumed to be 2^(1/n) for some integer n, we can give instead the total number of large and small steps in the octave, instead of just the period, and this is commonly done. In this case, GCD(L, s) gives the number of periods in an octave.