13edo: Difference between revisions
Wikispaces>xenwolf **Imported revision 239494451 - Original comment: ** |
Wikispaces>guest **Imported revision 241829697 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:guest|guest]] and made on <tt>2011-07-18 16:38:28 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>241829697</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 8: | Line 8: | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=13 tone equal temperament / 13edo= | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=13 tone equal temperament / 13edo= | ||
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third & major sixth are xenharmonic (not similar to anything available in 12edo). Due to the prime character of the number 13, 13edo can form several xenharmonic [[MOSScales|moment of symmetry scales]]. The diagram below shows five "families" of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, & 6\13, respectively. | 13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third & major sixth are xenharmonic (not similar to anything available in 12edo). | ||
|| Degree || Cents || Approximate Ratios* || | |||
|| 0 || 0 || 1/1 || | |||
|| 1 || 92.3077 || || | |||
|| 2 || 184.6154 || 10/9, 9/8, 11/10 || | |||
|| 3 || 276.9231 || 13/11 || | |||
|| 4 || 369.2308 || 5/4, 16/13, 11/9 || | |||
|| 5 || 461.5385 || 13/10 || | |||
|| 6 || 553.84 || 11/8, 18/13 || | |||
|| 7 || 646.15 || 16/11, 13/9 || | |||
|| 8 || 738.46 || 20/13 || | |||
|| 9 || 830.77 || 8/5, 13/8, 18/11 || | |||
|| 10 || 923.08 || 22/13 || | |||
|| 11 || 1015.38 || 9/5, 16/9, 20/11 || | |||
|| 12 || 1107.69 || || | |||
|| 13 || 1200 || 2/1 || | |||
*based on treating 13-EDO as a 2.5.9.11.13 temperament; other approaches are possible. | |||
==Harmony in 13edo== | |||
One way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. Another way to view it is to totally disregard JI approximations entirely. | |||
Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings), and the most successful approaches do not always make the most sense in terms of JI. | |||
==Scales in 13edo== | |||
Due to the prime character of the number 13, 13edo can form several xenharmonic [[MOSScales|moment of symmetry scales]]. The diagram below shows five "families" of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, & 6\13, respectively. | |||
[[image:13edo_horograms.jpg]] | [[image:13edo_horograms.jpg]] | ||
Line 37: | Line 61: | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>13edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x13 tone equal temperament / 13edo"></a><!-- ws:end:WikiTextHeadingRule:0 -->13 tone equal temperament / 13edo</h1> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>13edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x13 tone equal temperament / 13edo"></a><!-- ws:end:WikiTextHeadingRule:0 -->13 tone equal temperament / 13edo</h1> | ||
<br /> | <br /> | ||
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo). Due to the prime character of the number 13, 13edo can form several xenharmonic <a class="wiki_link" href="/MOSScales">moment of symmetry scales</a>. The diagram below shows five &quot;families&quot; of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, &amp; 6\13, respectively.<br /> | 13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo). <br /> | ||
<table class="wiki_table"> | |||
<tr> | |||
<td>Degree<br /> | |||
</td> | |||
<td>Cents<br /> | |||
</td> | |||
<td>Approximate Ratios*<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>0<br /> | |||
</td> | |||
<td>0<br /> | |||
</td> | |||
<td>1/1<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>1<br /> | |||
</td> | |||
<td>92.3077<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>2<br /> | |||
</td> | |||
<td>184.6154<br /> | |||
</td> | |||
<td>10/9, 9/8, 11/10<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>3<br /> | |||
</td> | |||
<td>276.9231<br /> | |||
</td> | |||
<td>13/11<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>4<br /> | |||
</td> | |||
<td>369.2308<br /> | |||
</td> | |||
<td>5/4, 16/13, 11/9<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>5<br /> | |||
</td> | |||
<td>461.5385<br /> | |||
</td> | |||
<td>13/10<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>6<br /> | |||
</td> | |||
<td>553.84<br /> | |||
</td> | |||
<td>11/8, 18/13<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>7<br /> | |||
</td> | |||
<td>646.15<br /> | |||
</td> | |||
<td>16/11, 13/9<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>8<br /> | |||
</td> | |||
<td>738.46<br /> | |||
</td> | |||
<td>20/13<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>9<br /> | |||
</td> | |||
<td>830.77<br /> | |||
</td> | |||
<td>8/5, 13/8, 18/11<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>10<br /> | |||
</td> | |||
<td>923.08<br /> | |||
</td> | |||
<td>22/13<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>11<br /> | |||
</td> | |||
<td>1015.38<br /> | |||
</td> | |||
<td>9/5, 16/9, 20/11<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>12<br /> | |||
</td> | |||
<td>1107.69<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>13<br /> | |||
</td> | |||
<td>1200<br /> | |||
</td> | |||
<td>2/1<br /> | |||
</td> | |||
</tr> | |||
</table> | |||
*based on treating 13-EDO as a 2.5.9.11.13 temperament; other approaches are possible.<br /> | |||
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x13 tone equal temperament / 13edo-Harmony in 13edo"></a><!-- ws:end:WikiTextHeadingRule:2 -->Harmony in 13edo</h2> | |||
<br /> | |||
One way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. Another way to view it is to totally disregard JI approximations entirely.<br /> | |||
<br /> | |||
Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings), and the most successful approaches do not always make the most sense in terms of JI.<br /> | |||
<br /> | |||
<!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="x13 tone equal temperament / 13edo-Scales in 13edo"></a><!-- ws:end:WikiTextHeadingRule:4 -->Scales in 13edo</h2> | |||
Due to the prime character of the number 13, 13edo can form several xenharmonic <a class="wiki_link" href="/MOSScales">moment of symmetry scales</a>. The diagram below shows five &quot;families&quot; of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, &amp; 6\13, respectively.<br /> | |||
<br /> | <br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:272:&lt;img src=&quot;/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg" alt="13edo_horograms.jpg" title="13edo_horograms.jpg" /><!-- ws:end:WikiTextLocalImageRule:272 --><br /> | ||
<!-- ws:start:WikiTextFileRule: | <!-- ws:start:WikiTextFileRule:273:&lt;img src=&quot;http://www.wikispaces.com/site/embedthumbnail/file/13edo%20horograms.pdf?h=52&amp;w=320&quot; class=&quot;WikiFile&quot; id=&quot;wikitext@@file@@13edo horograms.pdf&quot; title=&quot;File: 13edo horograms.pdf&quot; width=&quot;320&quot; height=&quot;52&quot; /&gt; --><div class="objectEmbed"><a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');"><img src="http://www.wikispaces.com/i/mime/32/application/pdf.png" height="32" width="32" alt="13edo horograms.pdf" /></a><div><a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');" class="filename" title="13edo horograms.pdf">13edo horograms.pdf</a><br /><ul><li><a href="/file/detail/13edo%20horograms.pdf">Details</a></li><li><a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf">Download</a></li><li style="color: #666">242 KB</li></ul></div></div><!-- ws:end:WikiTextFileRule:273 --><br /> | ||
~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson<br /> | ~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson<br /> | ||
<br /> | <br /> | ||
Line 51: | Line 209: | ||
<a class="wiki_link_ext" href="http://www.soundclick.com/bands/page_songInfo.cfm?bandID=122613&amp;songID=835265" rel="nofollow">Spikey Hair in 13tET</a> <a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Heathwaite/andrewheathwaite+improvisationin13tet.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Andrew%20Heathwaite">Andrew Heathwaite</a><br /> | <a class="wiki_link_ext" href="http://www.soundclick.com/bands/page_songInfo.cfm?bandID=122613&amp;songID=835265" rel="nofollow">Spikey Hair in 13tET</a> <a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Heathwaite/andrewheathwaite+improvisationin13tet.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Andrew%20Heathwaite">Andrew Heathwaite</a><br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="x13 tone equal temperament / 13edo-Commas"></a><!-- ws:end:WikiTextHeadingRule:6 -->Commas</h2> | ||
13 EDO <a class="wiki_link" href="/tempering%20out">tempers out</a> the following <a class="wiki_link" href="/comma">comma</a>s. (Note: This assumes the val &lt; 13 21 30 36 45 48 |.)<br /> | 13 EDO <a class="wiki_link" href="/tempering%20out">tempers out</a> the following <a class="wiki_link" href="/comma">comma</a>s. (Note: This assumes the val &lt; 13 21 30 36 45 48 |.)<br /> | ||