13edo: Difference between revisions

Wikispaces>xenwolf
**Imported revision 239494451 - Original comment: **
Wikispaces>guest
**Imported revision 241829697 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-06-30 10:08:39 UTC</tt>.<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2011-07-18 16:38:28 UTC</tt>.<br>
: The original revision id was <tt>239494451</tt>.<br>
: The original revision id was <tt>241829697</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=13 tone equal temperament / 13edo=  
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=13 tone equal temperament / 13edo=  


13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo). Due to the prime character of the number 13, 13edo can form several xenharmonic [[MOSScales|moment of symmetry scales]]. The diagram below shows five "families" of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, &amp; 6\13, respectively.
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo).  
|| Degree || Cents || Approximate Ratios* ||
|| 0 || 0 || 1/1 ||
|| 1 || 92.3077 ||  ||
|| 2 || 184.6154 || 10/9, 9/8, 11/10 ||
|| 3 || 276.9231 || 13/11 ||
|| 4 || 369.2308 || 5/4, 16/13, 11/9 ||
|| 5 || 461.5385 || 13/10 ||
|| 6 || 553.84 || 11/8, 18/13 ||
|| 7 || 646.15 || 16/11, 13/9 ||
|| 8 || 738.46 || 20/13 ||
|| 9 || 830.77 || 8/5, 13/8, 18/11 ||
|| 10 || 923.08 || 22/13 ||
|| 11 || 1015.38 || 9/5, 16/9, 20/11 ||
|| 12 || 1107.69 ||  ||
|| 13 || 1200 || 2/1 ||
*based on treating 13-EDO as a 2.5.9.11.13 temperament; other approaches are possible.
==Harmony in 13edo==
 
One way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. Another way to view it is to totally disregard JI approximations entirely.
 
Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings), and the most successful approaches do not always make the most sense in terms of JI.
 
==Scales in 13edo==
Due to the prime character of the number 13, 13edo can form several xenharmonic [[MOSScales|moment of symmetry scales]]. The diagram below shows five "families" of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, &amp; 6\13, respectively.


[[image:13edo_horograms.jpg]]
[[image:13edo_horograms.jpg]]
Line 37: Line 61:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;13edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x13 tone equal temperament / 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;13 tone equal temperament / 13edo&lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;13edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x13 tone equal temperament / 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;13 tone equal temperament / 13edo&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp;amp; major sixth are xenharmonic (not similar to anything available in 12edo). Due to the prime character of the number 13, 13edo can form several xenharmonic &lt;a class="wiki_link" href="/MOSScales"&gt;moment of symmetry scales&lt;/a&gt;. The diagram below shows five &amp;quot;families&amp;quot; of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, &amp;amp; 6\13, respectively.&lt;br /&gt;
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp;amp; major sixth are xenharmonic (not similar to anything available in 12edo). &lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;Degree&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Cents&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Approximate Ratios*&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;92.3077&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;184.6154&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10/9, 9/8, 11/10&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;276.9231&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/11&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;369.2308&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/4, 16/13, 11/9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;461.5385&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/10&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;553.84&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/8, 18/13&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;646.15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/11, 13/9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;738.46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20/13&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;830.77&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/5, 13/8, 18/11&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;923.08&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;22/13&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1015.38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/5, 16/9, 20/11&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1107.69&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
*based on treating 13-EDO as a 2.5.9.11.13 temperament; other approaches are possible.&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x13 tone equal temperament / 13edo-Harmony in 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Harmony in 13edo&lt;/h2&gt;
&lt;br /&gt;
One way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. Another way to view it is to totally disregard JI approximations entirely.&lt;br /&gt;
&lt;br /&gt;
Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings), and the most successful approaches do not always make the most sense in terms of JI.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="x13 tone equal temperament / 13edo-Scales in 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Scales in 13edo&lt;/h2&gt;
Due to the prime character of the number 13, 13edo can form several xenharmonic &lt;a class="wiki_link" href="/MOSScales"&gt;moment of symmetry scales&lt;/a&gt;. The diagram below shows five &amp;quot;families&amp;quot; of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, &amp;amp; 6\13, respectively.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:146:&amp;lt;img src=&amp;quot;/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg" alt="13edo_horograms.jpg" title="13edo_horograms.jpg" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:146 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:272:&amp;lt;img src=&amp;quot;/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg" alt="13edo_horograms.jpg" title="13edo_horograms.jpg" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:272 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextFileRule:147:&amp;lt;img src=&amp;quot;http://www.wikispaces.com/site/embedthumbnail/file/13edo%20horograms.pdf?h=52&amp;amp;w=320&amp;quot; class=&amp;quot;WikiFile&amp;quot; id=&amp;quot;wikitext@@file@@13edo horograms.pdf&amp;quot; title=&amp;quot;File: 13edo horograms.pdf&amp;quot; width=&amp;quot;320&amp;quot; height=&amp;quot;52&amp;quot; /&amp;gt; --&gt;&lt;div class="objectEmbed"&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');"&gt;&lt;img src="http://www.wikispaces.com/i/mime/32/application/pdf.png" height="32" width="32" alt="13edo horograms.pdf" /&gt;&lt;/a&gt;&lt;div&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');" class="filename" title="13edo horograms.pdf"&gt;13edo horograms.pdf&lt;/a&gt;&lt;br /&gt;&lt;ul&gt;&lt;li&gt;&lt;a href="/file/detail/13edo%20horograms.pdf"&gt;Details&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf"&gt;Download&lt;/a&gt;&lt;/li&gt;&lt;li style="color: #666"&gt;242 KB&lt;/li&gt;&lt;/ul&gt;&lt;/div&gt;&lt;/div&gt;&lt;!-- ws:end:WikiTextFileRule:147 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextFileRule:273:&amp;lt;img src=&amp;quot;http://www.wikispaces.com/site/embedthumbnail/file/13edo%20horograms.pdf?h=52&amp;amp;w=320&amp;quot; class=&amp;quot;WikiFile&amp;quot; id=&amp;quot;wikitext@@file@@13edo horograms.pdf&amp;quot; title=&amp;quot;File: 13edo horograms.pdf&amp;quot; width=&amp;quot;320&amp;quot; height=&amp;quot;52&amp;quot; /&amp;gt; --&gt;&lt;div class="objectEmbed"&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');"&gt;&lt;img src="http://www.wikispaces.com/i/mime/32/application/pdf.png" height="32" width="32" alt="13edo horograms.pdf" /&gt;&lt;/a&gt;&lt;div&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');" class="filename" title="13edo horograms.pdf"&gt;13edo horograms.pdf&lt;/a&gt;&lt;br /&gt;&lt;ul&gt;&lt;li&gt;&lt;a href="/file/detail/13edo%20horograms.pdf"&gt;Details&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf"&gt;Download&lt;/a&gt;&lt;/li&gt;&lt;li style="color: #666"&gt;242 KB&lt;/li&gt;&lt;/ul&gt;&lt;/div&gt;&lt;/div&gt;&lt;!-- ws:end:WikiTextFileRule:273 --&gt;&lt;br /&gt;
~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson&lt;br /&gt;
~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 51: Line 209:
&lt;a class="wiki_link_ext" href="http://www.soundclick.com/bands/page_songInfo.cfm?bandID=122613&amp;amp;songID=835265" rel="nofollow"&gt;Spikey Hair in 13tET&lt;/a&gt; &lt;a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Heathwaite/andrewheathwaite+improvisationin13tet.mp3" rel="nofollow"&gt;play&lt;/a&gt; by &lt;a class="wiki_link" href="/Andrew%20Heathwaite"&gt;Andrew Heathwaite&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.soundclick.com/bands/page_songInfo.cfm?bandID=122613&amp;amp;songID=835265" rel="nofollow"&gt;Spikey Hair in 13tET&lt;/a&gt; &lt;a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Heathwaite/andrewheathwaite+improvisationin13tet.mp3" rel="nofollow"&gt;play&lt;/a&gt; by &lt;a class="wiki_link" href="/Andrew%20Heathwaite"&gt;Andrew Heathwaite&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x13 tone equal temperament / 13edo-Commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Commas&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="x13 tone equal temperament / 13edo-Commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Commas&lt;/h2&gt;
  13 EDO &lt;a class="wiki_link" href="/tempering%20out"&gt;tempers out&lt;/a&gt; the following &lt;a class="wiki_link" href="/comma"&gt;comma&lt;/a&gt;s. (Note: This assumes the val &amp;lt; 13 21 30 36 45 48 |.)&lt;br /&gt;
  13 EDO &lt;a class="wiki_link" href="/tempering%20out"&gt;tempers out&lt;/a&gt; the following &lt;a class="wiki_link" href="/comma"&gt;comma&lt;/a&gt;s. (Note: This assumes the val &amp;lt; 13 21 30 36 45 48 |.)&lt;br /&gt;