13edo: Difference between revisions

Wikispaces>guest
**Imported revision 241829697 - Original comment: **
Wikispaces>guest
**Imported revision 241835257 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2011-07-18 16:38:28 UTC</tt>.<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2011-07-18 17:26:36 UTC</tt>.<br>
: The original revision id was <tt>241829697</tt>.<br>
: The original revision id was <tt>241835257</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=13 tone equal temperament / 13edo=  
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=13 tone equal temperament / 13edo=  


13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo).  
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo).
|| Degree || Cents || Approximate Ratios* ||
|| Degree || Cents || Approximate Ratios* ||
|| 0 || 0 || 1/1 ||
|| 0 || 0 || 1/1 ||
Line 29: Line 29:
One way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. Another way to view it is to totally disregard JI approximations entirely.
One way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. Another way to view it is to totally disregard JI approximations entirely.


Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings), and the most successful approaches do not always make the most sense in terms of JI.
Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a "stack of 3rds" the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (degrees 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, triads of 0-2-4, 0-2-5, and 0-3-5 can be quite consonant in some musical circumstances. Another approach is to use chords where the intervals are widely-spaced, exceeding the octave; for instance, 0-10-15, 0-11-15, 0-12-15, and 0-11-16 can also sound reasonably consonant. Of course, the consonance available in 13-EDO is quite different than that available in 12-EDO, but that's kind of the point of using 13-EDO. It is harmonically on another planet from 12-EDO.


==Scales in 13edo==  
==Scales in 13edo==  
Line 37: Line 37:
[[file:13edo horograms.pdf]]
[[file:13edo horograms.pdf]]
~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson
~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson
Another neat facet of 13-EDO is the fact that any 12-EDO scale can be "turned into" a 13-EDO scale by either adding an extra semitone, or turning an existent semitone into a whole-tone. Because of this, melody in 13-EDO can be quite mind-bending and uncanny, and phrases that begin in a familiar way quickly lead to something totally unexpected.


**Compositions**
**Compositions**
Line 45: Line 47:
[[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Herman/triskaidekaphobia.mp3|Triskaidekaphobia]] by [[http://www.io.com/%7Ehmiller/music/|Herman Miller]]
[[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Herman/triskaidekaphobia.mp3|Triskaidekaphobia]] by [[http://www.io.com/%7Ehmiller/music/|Herman Miller]]
[[http://www.soundclick.com/bands/page_songInfo.cfm?bandID=122613&amp;songID=835265|Spikey Hair in 13tET]] [[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Heathwaite/andrewheathwaite+improvisationin13tet.mp3|play]] by [[Andrew Heathwaite]]
[[http://www.soundclick.com/bands/page_songInfo.cfm?bandID=122613&amp;songID=835265|Spikey Hair in 13tET]] [[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Heathwaite/andrewheathwaite+improvisationin13tet.mp3|play]] by [[Andrew Heathwaite]]
[[@http://cityoftheasleep.bandcamp.com/track/broken-dream-jar|Broken Dream Jar]] by [[IgliashonJones|City of the Asleep]]
[[@http://www.last.fm/music/City+of+the+Asleep/Map+of+an+Internal+Landscape/Blinding+White+Darkness|Blinding White Darkness]] by [[IgliashonJones|City of the Asleep]]


==Commas==  
==Commas==  
Line 61: Line 65:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;13edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x13 tone equal temperament / 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;13 tone equal temperament / 13edo&lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;13edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x13 tone equal temperament / 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;13 tone equal temperament / 13edo&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp;amp; major sixth are xenharmonic (not similar to anything available in 12edo). &lt;br /&gt;
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp;amp; major sixth are xenharmonic (not similar to anything available in 12edo).&lt;br /&gt;




Line 192: Line 196:
One way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. Another way to view it is to totally disregard JI approximations entirely.&lt;br /&gt;
One way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. Another way to view it is to totally disregard JI approximations entirely.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings), and the most successful approaches do not always make the most sense in terms of JI.&lt;br /&gt;
Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a &amp;quot;stack of 3rds&amp;quot; the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (degrees 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, triads of 0-2-4, 0-2-5, and 0-3-5 can be quite consonant in some musical circumstances. Another approach is to use chords where the intervals are widely-spaced, exceeding the octave; for instance, 0-10-15, 0-11-15, 0-12-15, and 0-11-16 can also sound reasonably consonant. Of course, the consonance available in 13-EDO is quite different than that available in 12-EDO, but that's kind of the point of using 13-EDO. It is harmonically on another planet from 12-EDO.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="x13 tone equal temperament / 13edo-Scales in 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Scales in 13edo&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="x13 tone equal temperament / 13edo-Scales in 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Scales in 13edo&lt;/h2&gt;
Line 200: Line 204:
&lt;!-- ws:start:WikiTextFileRule:273:&amp;lt;img src=&amp;quot;http://www.wikispaces.com/site/embedthumbnail/file/13edo%20horograms.pdf?h=52&amp;amp;w=320&amp;quot; class=&amp;quot;WikiFile&amp;quot; id=&amp;quot;wikitext@@file@@13edo horograms.pdf&amp;quot; title=&amp;quot;File: 13edo horograms.pdf&amp;quot; width=&amp;quot;320&amp;quot; height=&amp;quot;52&amp;quot; /&amp;gt; --&gt;&lt;div class="objectEmbed"&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');"&gt;&lt;img src="http://www.wikispaces.com/i/mime/32/application/pdf.png" height="32" width="32" alt="13edo horograms.pdf" /&gt;&lt;/a&gt;&lt;div&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');" class="filename" title="13edo horograms.pdf"&gt;13edo horograms.pdf&lt;/a&gt;&lt;br /&gt;&lt;ul&gt;&lt;li&gt;&lt;a href="/file/detail/13edo%20horograms.pdf"&gt;Details&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf"&gt;Download&lt;/a&gt;&lt;/li&gt;&lt;li style="color: #666"&gt;242 KB&lt;/li&gt;&lt;/ul&gt;&lt;/div&gt;&lt;/div&gt;&lt;!-- ws:end:WikiTextFileRule:273 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextFileRule:273:&amp;lt;img src=&amp;quot;http://www.wikispaces.com/site/embedthumbnail/file/13edo%20horograms.pdf?h=52&amp;amp;w=320&amp;quot; class=&amp;quot;WikiFile&amp;quot; id=&amp;quot;wikitext@@file@@13edo horograms.pdf&amp;quot; title=&amp;quot;File: 13edo horograms.pdf&amp;quot; width=&amp;quot;320&amp;quot; height=&amp;quot;52&amp;quot; /&amp;gt; --&gt;&lt;div class="objectEmbed"&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');"&gt;&lt;img src="http://www.wikispaces.com/i/mime/32/application/pdf.png" height="32" width="32" alt="13edo horograms.pdf" /&gt;&lt;/a&gt;&lt;div&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');" class="filename" title="13edo horograms.pdf"&gt;13edo horograms.pdf&lt;/a&gt;&lt;br /&gt;&lt;ul&gt;&lt;li&gt;&lt;a href="/file/detail/13edo%20horograms.pdf"&gt;Details&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf"&gt;Download&lt;/a&gt;&lt;/li&gt;&lt;li style="color: #666"&gt;242 KB&lt;/li&gt;&lt;/ul&gt;&lt;/div&gt;&lt;/div&gt;&lt;!-- ws:end:WikiTextFileRule:273 --&gt;&lt;br /&gt;
~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson&lt;br /&gt;
~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson&lt;br /&gt;
&lt;br /&gt;
Another neat facet of 13-EDO is the fact that any 12-EDO scale can be &amp;quot;turned into&amp;quot; a 13-EDO scale by either adding an extra semitone, or turning an existent semitone into a whole-tone. Because of this, melody in 13-EDO can be quite mind-bending and uncanny, and phrases that begin in a familiar way quickly lead to something totally unexpected.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;strong&gt;Compositions&lt;/strong&gt;&lt;br /&gt;
&lt;strong&gt;Compositions&lt;/strong&gt;&lt;br /&gt;
Line 208: Line 214:
&lt;a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Herman/triskaidekaphobia.mp3" rel="nofollow"&gt;Triskaidekaphobia&lt;/a&gt; by &lt;a class="wiki_link_ext" href="http://www.io.com/%7Ehmiller/music/" rel="nofollow"&gt;Herman Miller&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Herman/triskaidekaphobia.mp3" rel="nofollow"&gt;Triskaidekaphobia&lt;/a&gt; by &lt;a class="wiki_link_ext" href="http://www.io.com/%7Ehmiller/music/" rel="nofollow"&gt;Herman Miller&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.soundclick.com/bands/page_songInfo.cfm?bandID=122613&amp;amp;songID=835265" rel="nofollow"&gt;Spikey Hair in 13tET&lt;/a&gt; &lt;a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Heathwaite/andrewheathwaite+improvisationin13tet.mp3" rel="nofollow"&gt;play&lt;/a&gt; by &lt;a class="wiki_link" href="/Andrew%20Heathwaite"&gt;Andrew Heathwaite&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.soundclick.com/bands/page_songInfo.cfm?bandID=122613&amp;amp;songID=835265" rel="nofollow"&gt;Spikey Hair in 13tET&lt;/a&gt; &lt;a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Heathwaite/andrewheathwaite+improvisationin13tet.mp3" rel="nofollow"&gt;play&lt;/a&gt; by &lt;a class="wiki_link" href="/Andrew%20Heathwaite"&gt;Andrew Heathwaite&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://cityoftheasleep.bandcamp.com/track/broken-dream-jar" rel="nofollow" target="_blank"&gt;Broken Dream Jar&lt;/a&gt; by &lt;a class="wiki_link" href="/IgliashonJones"&gt;City of the Asleep&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.last.fm/music/City+of+the+Asleep/Map+of+an+Internal+Landscape/Blinding+White+Darkness" rel="nofollow" target="_blank"&gt;Blinding White Darkness&lt;/a&gt; by &lt;a class="wiki_link" href="/IgliashonJones"&gt;City of the Asleep&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="x13 tone equal temperament / 13edo-Commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Commas&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="x13 tone equal temperament / 13edo-Commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Commas&lt;/h2&gt;