13edo: Difference between revisions

Wikispaces>guest
**Imported revision 241856091 - Original comment: **
Wikispaces>guest
**Imported revision 242210435 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2011-07-18 20:05:24 UTC</tt>.<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2011-07-20 23:18:55 UTC</tt>.<br>
: The original revision id was <tt>241856091</tt>.<br>
: The original revision id was <tt>242210435</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 9: Line 9:


13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo).
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo).
|| Degree || Cents || Approximate Ratios* ||
|| Degree || Cents ||= Approximate Ratios* ||
|| 0 || 0 || 1/1 ||
|| 0 || 0 ||= 1/1 ||
|| 1 || 92.3077 ||   ||
|| 1 || 92.3077 ||= 55/52, 117/110, 26/25 ||
|| 2 || 184.6154 || 10/9, 9/8, 11/10 ||
|| 2 || 184.6154 ||= 10/9, 9/8, 11/10 ||
|| 3 || 276.9231 || 13/11 ||
|| 3 || 276.9231 ||= 13/11 ||
|| 4 || 369.2308 || 5/4, 16/13, 11/9 ||
|| 4 || 369.2308 ||= 5/4, 16/13, 11/9 ||
|| 5 || 461.5385 || 13/10 ||
|| 5 || 461.5385 ||= 13/10 ||
|| 6 || 553.84 || 11/8, 18/13 ||
|| 6 || 553.84 ||= 11/8, 18/13 ||
|| 7 || 646.15 || 16/11, 13/9 ||
|| 7 || 646.15 ||= 16/11, 13/9 ||
|| 8 || 738.46 || 20/13 ||
|| 8 || 738.46 ||= 20/13 ||
|| 9 || 830.77 || 8/5, 13/8, 18/11 ||
|| 9 || 830.77 ||= 8/5, 13/8, 18/11 ||
|| 10 || 923.08 || 22/13 ||
|| 10 || 923.08 ||= 22/13 ||
|| 11 || 1015.38 || 9/5, 16/9, 20/11 ||
|| 11 || 1015.38 ||= 9/5, 16/9, 20/11 ||
|| 12 || 1107.69 ||   ||
|| 12 || 1107.69 ||= 25/13, 104/55 ||
|| 13 || 1200 || 2/1 ||
|| 13 || 1200 ||= 2/1 ||
*based on treating 13-EDO as a 2.5.9.11.13 temperament; other approaches are possible.
*based on treating 13-EDO as a 2.5.9.11.13 temperament; other approaches are possible.
==Harmony in 13edo==  
==Harmony in 13edo==  


Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a "stack of 3rds" the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (degrees 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, one way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. It actually performs quite admirably in this regard, and a chord of 0-4-15-19-22 (approximating 4:5:9:11:13) sounds very convincing. The simplest MOS scale to support this pentad uses the 2nd degree (~185 cents) as a generator, and at 7 notes (6L1s) two full pentads are available (as well as two more 4:5:9:11 tetrad, and one 4:5:9:13 tetrad).  
Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a "stack of 3rds" the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (degrees 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, one way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. It actually performs quite admirably in this regard, and a chord of 0-4-15-19-22 (approximating 4:5:9:11:13) sounds very convincing. The simplest MOS scale to support this pentad uses the 2nd degree (~185 cents) as a generator, and at 7 notes (6L1s) two full pentads are available (as well as two more 4:5:9:11 tetrad, and one 4:5:9:13 tetrad).


==Scales in 13edo==  
==Scales in 13edo==  
Line 72: Line 72:
         &lt;td&gt;Cents&lt;br /&gt;
         &lt;td&gt;Cents&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Approximate Ratios*&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Approximate Ratios*&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 80: Line 80:
         &lt;td&gt;0&lt;br /&gt;
         &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1/1&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;1/1&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 88: Line 88:
         &lt;td&gt;92.3077&lt;br /&gt;
         &lt;td&gt;92.3077&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;55/52, 117/110, 26/25&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 96: Line 96:
         &lt;td&gt;184.6154&lt;br /&gt;
         &lt;td&gt;184.6154&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;10/9, 9/8, 11/10&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;10/9, 9/8, 11/10&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 104: Line 104:
         &lt;td&gt;276.9231&lt;br /&gt;
         &lt;td&gt;276.9231&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;13/11&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;13/11&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 112: Line 112:
         &lt;td&gt;369.2308&lt;br /&gt;
         &lt;td&gt;369.2308&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;5/4, 16/13, 11/9&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;5/4, 16/13, 11/9&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 120: Line 120:
         &lt;td&gt;461.5385&lt;br /&gt;
         &lt;td&gt;461.5385&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;13/10&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;13/10&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 128: Line 128:
         &lt;td&gt;553.84&lt;br /&gt;
         &lt;td&gt;553.84&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;11/8, 18/13&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;11/8, 18/13&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 136: Line 136:
         &lt;td&gt;646.15&lt;br /&gt;
         &lt;td&gt;646.15&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;16/11, 13/9&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;16/11, 13/9&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 144: Line 144:
         &lt;td&gt;738.46&lt;br /&gt;
         &lt;td&gt;738.46&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;20/13&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;20/13&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 152: Line 152:
         &lt;td&gt;830.77&lt;br /&gt;
         &lt;td&gt;830.77&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;8/5, 13/8, 18/11&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;8/5, 13/8, 18/11&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 160: Line 160:
         &lt;td&gt;923.08&lt;br /&gt;
         &lt;td&gt;923.08&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;22/13&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;22/13&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 168: Line 168:
         &lt;td&gt;1015.38&lt;br /&gt;
         &lt;td&gt;1015.38&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;9/5, 16/9, 20/11&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;9/5, 16/9, 20/11&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 176: Line 176:
         &lt;td&gt;1107.69&lt;br /&gt;
         &lt;td&gt;1107.69&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;25/13, 104/55&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 184: Line 184:
         &lt;td&gt;1200&lt;br /&gt;
         &lt;td&gt;1200&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;2/1&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;2/1&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 192: Line 192:
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x13 tone equal temperament / 13edo-Harmony in 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Harmony in 13edo&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x13 tone equal temperament / 13edo-Harmony in 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Harmony in 13edo&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a &amp;quot;stack of 3rds&amp;quot; the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (degrees 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, one way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. It actually performs quite admirably in this regard, and a chord of 0-4-15-19-22 (approximating 4:5:9:11:13) sounds very convincing. The simplest MOS scale to support this pentad uses the 2nd degree (~185 cents) as a generator, and at 7 notes (6L1s) two full pentads are available (as well as two more 4:5:9:11 tetrad, and one 4:5:9:13 tetrad). &lt;br /&gt;
Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a &amp;quot;stack of 3rds&amp;quot; the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (degrees 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, one way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. It actually performs quite admirably in this regard, and a chord of 0-4-15-19-22 (approximating 4:5:9:11:13) sounds very convincing. The simplest MOS scale to support this pentad uses the 2nd degree (~185 cents) as a generator, and at 7 notes (6L1s) two full pentads are available (as well as two more 4:5:9:11 tetrad, and one 4:5:9:13 tetrad).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="x13 tone equal temperament / 13edo-Scales in 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Scales in 13edo&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="x13 tone equal temperament / 13edo-Scales in 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Scales in 13edo&lt;/h2&gt;