13edo: Difference between revisions

Wikispaces>guest
**Imported revision 242210435 - Original comment: **
Wikispaces>igliashon
**Imported revision 243012613 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2011-07-20 23:18:55 UTC</tt>.<br>
: This revision was by author [[User:igliashon|igliashon]] and made on <tt>2011-07-26 23:11:23 UTC</tt>.<br>
: The original revision id was <tt>242210435</tt>.<br>
: The original revision id was <tt>243012613</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 9: Line 9:


13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo).
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo).
|| Degree || Cents ||= Approximate Ratios* ||
|| Degree || Cents ||= Approximate Ratios* || Note Name** ||
|| 0 || 0 ||= 1/1 ||
|| 0 || 0 ||= 1/1 || C ||
|| 1 || 92.3077 ||= 55/52, 117/110, 26/25 ||
|| 1 || 92.3077 ||= 55/52, 117/110, 26/25 || C#/Db ||
|| 2 || 184.6154 ||= 10/9, 9/8, 11/10 ||
|| 2 || 184.6154 ||= 10/9, 9/8, 11/10 || D ||
|| 3 || 276.9231 ||= 13/11 ||
|| 3 || 276.9231 ||= 13/11 || D#/Eb ||
|| 4 || 369.2308 ||= 5/4, 16/13, 11/9 ||
|| 4 || 369.2308 ||= 5/4, 16/13, 11/9 || E ||
|| 5 || 461.5385 ||= 13/10 ||
|| 5 || 461.5385 ||= 13/10 || E#/Fb ||
|| 6 || 553.84 ||= 11/8, 18/13 ||
|| 6 || 553.84 ||= 11/8, 18/13 || F ||
|| 7 || 646.15 ||= 16/11, 13/9 ||
|| 7 || 646.15 ||= 16/11, 13/9 || F#/Gb ||
|| 8 || 738.46 ||= 20/13 ||
|| 8 || 738.46 ||= 20/13 || G ||
|| 9 || 830.77 ||= 8/5, 13/8, 18/11 ||
|| 9 || 830.77 ||= 8/5, 13/8, 18/11 || G#/Ab ||
|| 10 || 923.08 ||= 22/13 ||
|| 10 || 923.08 ||= 22/13 || A ||
|| 11 || 1015.38 ||= 9/5, 16/9, 20/11 ||
|| 11 || 1015.38 ||= 9/5, 16/9, 20/11 || A#/Bb ||
|| 12 || 1107.69 ||= 25/13, 104/55 ||
|| 12 || 1107.69 ||= 25/13, 104/55 || B/Cb ||
|| 13 || 1200 ||= 2/1 ||
|| 13 || 1200 ||= 2/1 || C/B# ||
*based on treating 13-EDO as a 2.5.9.11.13 temperament; other approaches are possible.
*based on treating 13-EDO as a 2.5.9.11.13 temperament; other approaches are possible.
**based on the 6L1s heptatonic scale; see below.
==Harmony in 13edo==  
==Harmony in 13edo==  


Line 38: Line 39:
Another neat facet of 13-EDO is the fact that any 12-EDO scale can be "turned into" a 13-EDO scale by either adding an extra semitone, or turning an existent semitone into a whole-tone. Because of this, melody in 13-EDO can be quite mind-bending and uncanny, and phrases that begin in a familiar way quickly lead to something totally unexpected.
Another neat facet of 13-EDO is the fact that any 12-EDO scale can be "turned into" a 13-EDO scale by either adding an extra semitone, or turning an existent semitone into a whole-tone. Because of this, melody in 13-EDO can be quite mind-bending and uncanny, and phrases that begin in a familiar way quickly lead to something totally unexpected.


**Compositions**
===**Compositions**===


[[http://www.microtonalmusic.net/audio/slowdance13edo.mp3|Slow Dance]] by [[http://danielthompson.blogspot.com/|Daniel Thompson]]
[[http://www.microtonalmusic.net/audio/slowdance13edo.mp3|Slow Dance]] by [[http://danielthompson.blogspot.com/|Daniel Thompson]]
Line 47: Line 48:
[[@http://cityoftheasleep.bandcamp.com/track/broken-dream-jar|Broken Dream Jar]] by [[IgliashonJones|City of the Asleep]]
[[@http://cityoftheasleep.bandcamp.com/track/broken-dream-jar|Broken Dream Jar]] by [[IgliashonJones|City of the Asleep]]
[[@http://www.last.fm/music/City+of+the+Asleep/Map+of+an+Internal+Landscape/Blinding+White+Darkness|Blinding White Darkness]] by [[IgliashonJones|City of the Asleep]]
[[@http://www.last.fm/music/City+of+the+Asleep/Map+of+an+Internal+Landscape/Blinding+White+Darkness|Blinding White Darkness]] by [[IgliashonJones|City of the Asleep]]
==Igliashon's 13-EDO diatonic approaches==
From a temperament perspective, we can probably make the best use of 13-EDO as a 2.5.9.11.13 subgroup, but assuming our goal is to make reasonably-tonal, triad-based music, we might prefer to think in terms of subsets of this subgroup. The most accurately-tuned subsets are 2.5.9, 2.5.11, 2.5.13, and 2.11.13, and for each of these, there is a corresponding MOS generator that is maximally-efficient at producing the desired triad. For 2.5.13, the simplest generator is 4\13, with an octave-equivalent mapping &lt;1 -1| (for 5 and 13), corresponding to the 3rd horogram above. For 2.11.13, the simplest generator is 3\13, with an octave-equivalent mapping &lt;2 3| (for 11 and 13). This corresponds to the 2nd horogram above.
2.5.9 and 2.5.11 are both best-served by the 2\13 generator, corresponding to the 1st horogram above, having the (octave-equivalent) mappings of &lt;2 1| (for 5 and 9) and &lt;2 3| (for 5 and 11). This generator incidentally is also the most efficient at generating the entire 2.5.9.11.13 subgroup, which it achieves in the space of 5 generators via the octave-equivalent mapping &lt;2 1 3 -2|. Being that this scale is the most well-supplied with the greatest number of target triads, we might want to consider it "the" tonal basis for 13-EDO, analogous to the diatonic scale in 12-TET. We could, conveniently enough, use the 7-note MOS scale as a basis for naming the notes of 13-EDO, leading to a lettering very much like 12-TET except for the insertion of an additional accidental between E and F, as in the above interval chart.


==Commas==  
==Commas==  
Line 73: Line 81:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;Approximate Ratios*&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Approximate Ratios*&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Note Name&lt;strong&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 81: Line 91:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;1/1&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;C&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 89: Line 101:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;55/52, 117/110, 26/25&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;55/52, 117/110, 26/25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;C#/Db&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 97: Line 111:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;10/9, 9/8, 11/10&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;10/9, 9/8, 11/10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;D&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 105: Line 121:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;13/11&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;13/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;D#/Eb&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 113: Line 131:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;5/4, 16/13, 11/9&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;5/4, 16/13, 11/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;E&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 121: Line 141:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;13/10&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;13/10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;E#/Fb&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 129: Line 151:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;11/8, 18/13&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;11/8, 18/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;F&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 137: Line 161:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;16/11, 13/9&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;16/11, 13/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;F#/Gb&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 145: Line 171:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;20/13&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;20/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;G&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 153: Line 181:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;8/5, 13/8, 18/11&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;8/5, 13/8, 18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;G#/Ab&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 161: Line 191:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;22/13&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;22/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;A&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 169: Line 201:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;9/5, 16/9, 20/11&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;9/5, 16/9, 20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;A#/Bb&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 177: Line 211:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;25/13, 104/55&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;25/13, 104/55&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;B/Cb&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 185: Line 221:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;2/1&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;2/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;C/B#&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 190: Line 228:


*based on treating 13-EDO as a 2.5.9.11.13 temperament; other approaches are possible.&lt;br /&gt;
*based on treating 13-EDO as a 2.5.9.11.13 temperament; other approaches are possible.&lt;br /&gt;
&lt;/strong&gt;based on the 6L1s heptatonic scale; see below.&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x13 tone equal temperament / 13edo-Harmony in 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Harmony in 13edo&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x13 tone equal temperament / 13edo-Harmony in 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Harmony in 13edo&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Line 197: Line 236:
  Due to the prime character of the number 13, 13edo can form several xenharmonic &lt;a class="wiki_link" href="/MOSScales"&gt;moment of symmetry scales&lt;/a&gt;. The diagram below shows five &amp;quot;families&amp;quot; of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, &amp;amp; 6\13, respectively.&lt;br /&gt;
  Due to the prime character of the number 13, 13edo can form several xenharmonic &lt;a class="wiki_link" href="/MOSScales"&gt;moment of symmetry scales&lt;/a&gt;. The diagram below shows five &amp;quot;families&amp;quot; of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, &amp;amp; 6\13, respectively.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:272:&amp;lt;img src=&amp;quot;/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg" alt="13edo_horograms.jpg" title="13edo_horograms.jpg" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:272 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:306:&amp;lt;img src=&amp;quot;/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg" alt="13edo_horograms.jpg" title="13edo_horograms.jpg" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:306 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextFileRule:273:&amp;lt;img src=&amp;quot;http://www.wikispaces.com/site/embedthumbnail/file/13edo%20horograms.pdf?h=52&amp;amp;w=320&amp;quot; class=&amp;quot;WikiFile&amp;quot; id=&amp;quot;wikitext@@file@@13edo horograms.pdf&amp;quot; title=&amp;quot;File: 13edo horograms.pdf&amp;quot; width=&amp;quot;320&amp;quot; height=&amp;quot;52&amp;quot; /&amp;gt; --&gt;&lt;div class="objectEmbed"&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');"&gt;&lt;img src="http://www.wikispaces.com/i/mime/32/application/pdf.png" height="32" width="32" alt="13edo horograms.pdf" /&gt;&lt;/a&gt;&lt;div&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');" class="filename" title="13edo horograms.pdf"&gt;13edo horograms.pdf&lt;/a&gt;&lt;br /&gt;&lt;ul&gt;&lt;li&gt;&lt;a href="/file/detail/13edo%20horograms.pdf"&gt;Details&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf"&gt;Download&lt;/a&gt;&lt;/li&gt;&lt;li style="color: #666"&gt;242 KB&lt;/li&gt;&lt;/ul&gt;&lt;/div&gt;&lt;/div&gt;&lt;!-- ws:end:WikiTextFileRule:273 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextFileRule:307:&amp;lt;img src=&amp;quot;http://www.wikispaces.com/site/embedthumbnail/file/13edo%20horograms.pdf?h=52&amp;amp;w=320&amp;quot; class=&amp;quot;WikiFile&amp;quot; id=&amp;quot;wikitext@@file@@13edo horograms.pdf&amp;quot; title=&amp;quot;File: 13edo horograms.pdf&amp;quot; width=&amp;quot;320&amp;quot; height=&amp;quot;52&amp;quot; /&amp;gt; --&gt;&lt;div class="objectEmbed"&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');"&gt;&lt;img src="http://www.wikispaces.com/i/mime/32/application/pdf.png" height="32" width="32" alt="13edo horograms.pdf" /&gt;&lt;/a&gt;&lt;div&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');" class="filename" title="13edo horograms.pdf"&gt;13edo horograms.pdf&lt;/a&gt;&lt;br /&gt;&lt;ul&gt;&lt;li&gt;&lt;a href="/file/detail/13edo%20horograms.pdf"&gt;Details&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf"&gt;Download&lt;/a&gt;&lt;/li&gt;&lt;li style="color: #666"&gt;242 KB&lt;/li&gt;&lt;/ul&gt;&lt;/div&gt;&lt;/div&gt;&lt;!-- ws:end:WikiTextFileRule:307 --&gt;&lt;br /&gt;
~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson&lt;br /&gt;
~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Another neat facet of 13-EDO is the fact that any 12-EDO scale can be &amp;quot;turned into&amp;quot; a 13-EDO scale by either adding an extra semitone, or turning an existent semitone into a whole-tone. Because of this, melody in 13-EDO can be quite mind-bending and uncanny, and phrases that begin in a familiar way quickly lead to something totally unexpected.&lt;br /&gt;
Another neat facet of 13-EDO is the fact that any 12-EDO scale can be &amp;quot;turned into&amp;quot; a 13-EDO scale by either adding an extra semitone, or turning an existent semitone into a whole-tone. Because of this, melody in 13-EDO can be quite mind-bending and uncanny, and phrases that begin in a familiar way quickly lead to something totally unexpected.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;strong&gt;Compositions&lt;/strong&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc3"&gt;&lt;a name="x13 tone equal temperament / 13edo-Scales in 13edo-Compositions"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;&lt;strong&gt;Compositions&lt;/strong&gt;&lt;/h3&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.microtonalmusic.net/audio/slowdance13edo.mp3" rel="nofollow"&gt;Slow Dance&lt;/a&gt; by &lt;a class="wiki_link_ext" href="http://danielthompson.blogspot.com/" rel="nofollow"&gt;Daniel Thompson&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.microtonalmusic.net/audio/slowdance13edo.mp3" rel="nofollow"&gt;Slow Dance&lt;/a&gt; by &lt;a class="wiki_link_ext" href="http://danielthompson.blogspot.com/" rel="nofollow"&gt;Daniel Thompson&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Hunt/Prelude%20in%2013ET.mp3" rel="nofollow"&gt;Prelude in 13ET&lt;/a&gt; by &lt;a class="wiki_link" href="/Aaron%20Andrew%20Hunt"&gt;Aaron Andrew Hunt&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Hunt/Prelude%20in%2013ET.mp3" rel="nofollow"&gt;Prelude in 13ET&lt;/a&gt; by &lt;a class="wiki_link" href="/Aaron%20Andrew%20Hunt"&gt;Aaron Andrew Hunt&lt;/a&gt;&lt;br /&gt;
Line 213: Line 252:
&lt;a class="wiki_link_ext" href="http://www.last.fm/music/City+of+the+Asleep/Map+of+an+Internal+Landscape/Blinding+White+Darkness" rel="nofollow" target="_blank"&gt;Blinding White Darkness&lt;/a&gt; by &lt;a class="wiki_link" href="/IgliashonJones"&gt;City of the Asleep&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.last.fm/music/City+of+the+Asleep/Map+of+an+Internal+Landscape/Blinding+White+Darkness" rel="nofollow" target="_blank"&gt;Blinding White Darkness&lt;/a&gt; by &lt;a class="wiki_link" href="/IgliashonJones"&gt;City of the Asleep&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="x13 tone equal temperament / 13edo-Commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Commas&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="x13 tone equal temperament / 13edo-Igliashon's 13-EDO diatonic approaches"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Igliashon's 13-EDO diatonic approaches&lt;/h2&gt;
&lt;br /&gt;
From a temperament perspective, we can probably make the best use of 13-EDO as a 2.5.9.11.13 subgroup, but assuming our goal is to make reasonably-tonal, triad-based music, we might prefer to think in terms of subsets of this subgroup. The most accurately-tuned subsets are 2.5.9, 2.5.11, 2.5.13, and 2.11.13, and for each of these, there is a corresponding MOS generator that is maximally-efficient at producing the desired triad. For 2.5.13, the simplest generator is 4\13, with an octave-equivalent mapping &amp;lt;1 -1| (for 5 and 13), corresponding to the 3rd horogram above. For 2.11.13, the simplest generator is 3\13, with an octave-equivalent mapping &amp;lt;2 3| (for 11 and 13). This corresponds to the 2nd horogram above.&lt;br /&gt;
&lt;br /&gt;
2.5.9 and 2.5.11 are both best-served by the 2\13 generator, corresponding to the 1st horogram above, having the (octave-equivalent) mappings of &amp;lt;2 1| (for 5 and 9) and &amp;lt;2 3| (for 5 and 11). This generator incidentally is also the most efficient at generating the entire 2.5.9.11.13 subgroup, which it achieves in the space of 5 generators via the octave-equivalent mapping &amp;lt;2 1 3 -2|. Being that this scale is the most well-supplied with the greatest number of target triads, we might want to consider it &amp;quot;the&amp;quot; tonal basis for 13-EDO, analogous to the diatonic scale in 12-TET. We could, conveniently enough, use the 7-note MOS scale as a basis for naming the notes of 13-EDO, leading to a lettering very much like 12-TET except for the insertion of an additional accidental between E and F, as in the above interval chart.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="x13 tone equal temperament / 13edo-Commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Commas&lt;/h2&gt;
  13 EDO &lt;a class="wiki_link" href="/tempering%20out"&gt;tempers out&lt;/a&gt; the following &lt;a class="wiki_link" href="/comma"&gt;comma&lt;/a&gt;s. (Note: This assumes the val &amp;lt; 13 21 30 36 45 48 |.)&lt;br /&gt;
  13 EDO &lt;a class="wiki_link" href="/tempering%20out"&gt;tempers out&lt;/a&gt; the following &lt;a class="wiki_link" href="/comma"&gt;comma&lt;/a&gt;s. (Note: This assumes the val &amp;lt; 13 21 30 36 45 48 |.)&lt;br /&gt;