13edo: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 243098561 - Original comment: **
Wikispaces>hstraub
**Imported revision 243200999 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-07-27 13:38:51 UTC</tt>.<br>
: This revision was by author [[User:hstraub|hstraub]] and made on <tt>2011-07-28 02:51:24 UTC</tt>.<br>
: The original revision id was <tt>243098561</tt>.<br>
: The original revision id was <tt>243200999</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
----


=13 tone equal temperament / 13edo=  
=13 tone equal temperament / 13edo=  
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo).
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo).
|| Degree || Cents ||= Approximate Ratios* || Note Name** ||
|| Degree || Cents ||= Approximate Ratios* || Note Name ||
|| 0 || 0 ||= 1/1 || C ||
|| 0 || 0 ||= 1/1 || C ||
|| 1 || 92.3077 ||= 55/52, 117/110, 26/25 || C#/Db ||
|| 1 || 92.3077 ||= 55/52, 117/110, 26/25 || C#/Db ||
Line 26: Line 27:
|| 13 || 1200 ||= 2/1 || C/B# ||
|| 13 || 1200 ||= 2/1 || C/B# ||
*based on treating 13-EDO as a 2.5.9.11.13 temperament; other approaches are possible.
*based on treating 13-EDO as a 2.5.9.11.13 temperament; other approaches are possible.
**based on the 6L1s heptatonic scale; see below.
based on the 6L1s heptatonic scale; see below.


==Harmony in 13edo==  
=Harmony in 13edo=  
Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a "stack of 3rds" the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (degrees 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, one way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. It actually performs quite admirably in this regard, and a chord of 0-4-15-19-22 (approximating 4:5:9:11:13) sounds very convincing. An even larger subgroup is the [[k*N subgroups|2*13 subgroup]] 2.9.5.21.11.13, on which 13 has the same tuning and commas as 26et.  
Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a "stack of 3rds" the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (degrees 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, one way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. It actually performs quite admirably in this regard, and a chord of 0-4-15-19-22 (approximating 4:5:9:11:13) sounds very convincing. An even larger subgroup is the [[k*N subgroups|2*13 subgroup]] 2.9.5.21.11.13, on which 13 has the same tuning and commas as 26et.


The 2.9.5.11.13 subgroup has commas 45/44, 65/64 and 81/80, leading to a linear temperament with POTE generator 185.728 cents, quite close to 2\13. Use this as a generator, and at 7 notes (6L1s) two full pentads are available (as well as two more 4:5:9:11 tetrad, and one 4:5:9:13 tetrad).
The 2.9.5.11.13 subgroup has commas 45/44, 65/64 and 81/80, leading to a linear temperament with POTE generator 185.728 cents, quite close to 2\13. Use this as a generator, and at 7 notes (6L1s) two full pentads are available (as well as two more 4:5:9:11 tetrad, and one 4:5:9:13 tetrad).


==Scales in 13edo==  
=Scales in 13edo=  
Due to the prime character of the number 13, 13edo can form several xenharmonic [[MOSScales|moment of symmetry scales]]. The diagram below shows five "families" of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, &amp; 6\13, respectively.
Due to the prime character of the number 13, 13edo can form several xenharmonic [[MOSScales|moment of symmetry scales]]. The diagram below shows five "families" of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, &amp; 6\13, respectively.


Line 42: Line 43:
Another neat facet of 13-EDO is the fact that any 12-EDO scale can be "turned into" a 13-EDO scale by either adding an extra semitone, or turning an existent semitone into a whole-tone. Because of this, melody in 13-EDO can be quite mind-bending and uncanny, and phrases that begin in a familiar way quickly lead to something totally unexpected.
Another neat facet of 13-EDO is the fact that any 12-EDO scale can be "turned into" a 13-EDO scale by either adding an extra semitone, or turning an existent semitone into a whole-tone. Because of this, melody in 13-EDO can be quite mind-bending and uncanny, and phrases that begin in a familiar way quickly lead to something totally unexpected.


===**Compositions**===  
=**Compositions**=  


[[http://www.microtonalmusic.net/audio/slowdance13edo.mp3|Slow Dance]] by [[http://danielthompson.blogspot.com/|Daniel Thompson]]
[[http://www.microtonalmusic.net/audio/slowdance13edo.mp3|Slow Dance]] by [[http://danielthompson.blogspot.com/|Daniel Thompson]]
Line 52: Line 53:
[[@http://www.last.fm/music/City+of+the+Asleep/Map+of+an+Internal+Landscape/Blinding+White+Darkness|Blinding White Darkness]] by [[IgliashonJones|City of the Asleep]]
[[@http://www.last.fm/music/City+of+the+Asleep/Map+of+an+Internal+Landscape/Blinding+White+Darkness|Blinding White Darkness]] by [[IgliashonJones|City of the Asleep]]


==Igliashon's 13-EDO diatonic approaches==  
=Igliashon's 13-EDO diatonic approaches=  


From a temperament perspective, we can probably make the best use of 13-EDO as a 2.5.9.11.13 subgroup, but assuming our goal is to make reasonably-tonal, triad-based music, we might prefer to think in terms of subsets of this subgroup. The most accurately-tuned subsets are 2.5.9, 2.5.11, 2.5.13, and 2.11.13, and for each of these, there is a corresponding MOS generator that is maximally-efficient at producing the desired triad. For 2.5.13, the simplest generator is 4\13, with an octave-equivalent mapping &lt;1 -1| (for 5 and 13), corresponding to the 3rd horogram above. For 2.11.13, the simplest generator is 3\13, with an octave-equivalent mapping &lt;2 3| (for 11 and 13). This corresponds to the 2nd horogram above.
From a temperament perspective, we can probably make the best use of 13-EDO as a 2.5.9.11.13 subgroup, but assuming our goal is to make reasonably-tonal, triad-based music, we might prefer to think in terms of subsets of this subgroup. The most accurately-tuned subsets are 2.5.9, 2.5.11, 2.5.13, and 2.11.13, and for each of these, there is a corresponding MOS generator that is maximally-efficient at producing the desired triad. For 2.5.13, the simplest generator is 4\13, with an octave-equivalent mapping &lt;1 -1| (for 5 and 13), corresponding to the 3rd horogram above. For 2.11.13, the simplest generator is 3\13, with an octave-equivalent mapping &lt;2 3| (for 11 and 13). This corresponds to the 2nd horogram above.
Line 59: Line 60:




==Commas==  
=Commas=  
13 EDO [[tempering out|tempers out]] the following [[comma]]s. (Note: This assumes the val &lt; 13 21 30 36 45 48 |.)
13 EDO [[tempering out|tempers out]] the following [[comma]]s. (Note: This assumes the val &lt; 13 21 30 36 45 48 |.)
||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 ||~ Name 3 ||
||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 ||~ Name 3 ||
Line 72: Line 73:
||= 441/440 ||&lt; | -3 2 -1 2 -1 &gt; ||&gt; 3.93 ||= Werckisma ||=  ||=  ||</pre></div>
||= 441/440 ||&lt; | -3 2 -1 2 -1 &gt; ||&gt; 3.93 ||= Werckisma ||=  ||=  ||</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;13edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:12:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt;&lt;a href="#x13 tone equal temperament / 13edo"&gt;13 tone equal temperament / 13edo&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt;&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt;&lt;!-- ws:end:WikiTextTocRule:17 --&gt;&lt;!-- ws:start:WikiTextTocRule:18: --&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;13edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:12:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt;&lt;a href="#x13 tone equal temperament / 13edo"&gt;13 tone equal temperament / 13edo&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt; | &lt;a href="#Harmony in 13edo"&gt;Harmony in 13edo&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt; | &lt;a href="#Scales in 13edo"&gt;Scales in 13edo&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt; | &lt;a href="#Compositions"&gt;Compositions&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt; | &lt;a href="#Igliashon's 13-EDO diatonic approaches"&gt;Igliashon's 13-EDO diatonic approaches&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:17 --&gt;&lt;!-- ws:start:WikiTextTocRule:18: --&gt; | &lt;a href="#Commas"&gt;Commas&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt;
&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;br /&gt;
&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;hr /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x13 tone equal temperament / 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;13 tone equal temperament / 13edo&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x13 tone equal temperament / 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;13 tone equal temperament / 13edo&lt;/h1&gt;
  13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp;amp; major sixth are xenharmonic (not similar to anything available in 12edo).&lt;br /&gt;
  13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp;amp; major sixth are xenharmonic (not similar to anything available in 12edo).&lt;br /&gt;
Line 86: Line 88:
         &lt;td style="text-align: center;"&gt;Approximate Ratios*&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Approximate Ratios*&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Note Name&lt;strong&gt;&lt;br /&gt;
         &lt;td&gt;Note Name&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 232: Line 234:


*based on treating 13-EDO as a 2.5.9.11.13 temperament; other approaches are possible.&lt;br /&gt;
*based on treating 13-EDO as a 2.5.9.11.13 temperament; other approaches are possible.&lt;br /&gt;
&lt;/strong&gt;based on the 6L1s heptatonic scale; see below.&lt;br /&gt;
based on the 6L1s heptatonic scale; see below.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x13 tone equal temperament / 13edo-Harmony in 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Harmony in 13edo&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Harmony in 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Harmony in 13edo&lt;/h1&gt;
  Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a &amp;quot;stack of 3rds&amp;quot; the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (degrees 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, one way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. It actually performs quite admirably in this regard, and a chord of 0-4-15-19-22 (approximating 4:5:9:11:13) sounds very convincing. An even larger subgroup is the &lt;a class="wiki_link" href="/k%2AN%20subgroups"&gt;2*13 subgroup&lt;/a&gt; 2.9.5.21.11.13, on which 13 has the same tuning and commas as 26et. &lt;br /&gt;
  Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a &amp;quot;stack of 3rds&amp;quot; the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (degrees 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, one way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. It actually performs quite admirably in this regard, and a chord of 0-4-15-19-22 (approximating 4:5:9:11:13) sounds very convincing. An even larger subgroup is the &lt;a class="wiki_link" href="/k%2AN%20subgroups"&gt;2*13 subgroup&lt;/a&gt; 2.9.5.21.11.13, on which 13 has the same tuning and commas as 26et.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The 2.9.5.11.13 subgroup has commas 45/44, 65/64 and 81/80, leading to a linear temperament with POTE generator 185.728 cents, quite close to 2\13. Use this as a generator, and at 7 notes (6L1s) two full pentads are available (as well as two more 4:5:9:11 tetrad, and one 4:5:9:13 tetrad).&lt;br /&gt;
The 2.9.5.11.13 subgroup has commas 45/44, 65/64 and 81/80, leading to a linear temperament with POTE generator 185.728 cents, quite close to 2\13. Use this as a generator, and at 7 notes (6L1s) two full pentads are available (as well as two more 4:5:9:11 tetrad, and one 4:5:9:13 tetrad).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="x13 tone equal temperament / 13edo-Scales in 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Scales in 13edo&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Scales in 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Scales in 13edo&lt;/h1&gt;
  Due to the prime character of the number 13, 13edo can form several xenharmonic &lt;a class="wiki_link" href="/MOSScales"&gt;moment of symmetry scales&lt;/a&gt;. The diagram below shows five &amp;quot;families&amp;quot; of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, &amp;amp; 6\13, respectively.&lt;br /&gt;
  Due to the prime character of the number 13, 13edo can form several xenharmonic &lt;a class="wiki_link" href="/MOSScales"&gt;moment of symmetry scales&lt;/a&gt;. The diagram below shows five &amp;quot;families&amp;quot; of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, &amp;amp; 6\13, respectively.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:314:&amp;lt;img src=&amp;quot;/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg" alt="13edo_horograms.jpg" title="13edo_horograms.jpg" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:314 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:315:&amp;lt;img src=&amp;quot;/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg" alt="13edo_horograms.jpg" title="13edo_horograms.jpg" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:315 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextFileRule:315:&amp;lt;img src=&amp;quot;http://www.wikispaces.com/site/embedthumbnail/file/13edo%20horograms.pdf?h=52&amp;amp;w=320&amp;quot; class=&amp;quot;WikiFile&amp;quot; id=&amp;quot;wikitext@@file@@13edo horograms.pdf&amp;quot; title=&amp;quot;File: 13edo horograms.pdf&amp;quot; width=&amp;quot;320&amp;quot; height=&amp;quot;52&amp;quot; /&amp;gt; --&gt;&lt;div class="objectEmbed"&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');"&gt;&lt;img src="http://www.wikispaces.com/i/mime/32/application/pdf.png" height="32" width="32" alt="13edo horograms.pdf" /&gt;&lt;/a&gt;&lt;div&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');" class="filename" title="13edo horograms.pdf"&gt;13edo horograms.pdf&lt;/a&gt;&lt;br /&gt;&lt;ul&gt;&lt;li&gt;&lt;a href="/file/detail/13edo%20horograms.pdf"&gt;Details&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf"&gt;Download&lt;/a&gt;&lt;/li&gt;&lt;li style="color: #666"&gt;242 KB&lt;/li&gt;&lt;/ul&gt;&lt;/div&gt;&lt;/div&gt;&lt;!-- ws:end:WikiTextFileRule:315 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextFileRule:316:&amp;lt;img src=&amp;quot;http://www.wikispaces.com/site/embedthumbnail/file/13edo%20horograms.pdf?h=52&amp;amp;w=320&amp;quot; class=&amp;quot;WikiFile&amp;quot; id=&amp;quot;wikitext@@file@@13edo horograms.pdf&amp;quot; title=&amp;quot;File: 13edo horograms.pdf&amp;quot; width=&amp;quot;320&amp;quot; height=&amp;quot;52&amp;quot; /&amp;gt; --&gt;&lt;div class="objectEmbed"&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');"&gt;&lt;img src="http://www.wikispaces.com/i/mime/32/application/pdf.png" height="32" width="32" alt="13edo horograms.pdf" /&gt;&lt;/a&gt;&lt;div&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');" class="filename" title="13edo horograms.pdf"&gt;13edo horograms.pdf&lt;/a&gt;&lt;br /&gt;&lt;ul&gt;&lt;li&gt;&lt;a href="/file/detail/13edo%20horograms.pdf"&gt;Details&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf"&gt;Download&lt;/a&gt;&lt;/li&gt;&lt;li style="color: #666"&gt;242 KB&lt;/li&gt;&lt;/ul&gt;&lt;/div&gt;&lt;/div&gt;&lt;!-- ws:end:WikiTextFileRule:316 --&gt;&lt;br /&gt;
~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson&lt;br /&gt;
~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Another neat facet of 13-EDO is the fact that any 12-EDO scale can be &amp;quot;turned into&amp;quot; a 13-EDO scale by either adding an extra semitone, or turning an existent semitone into a whole-tone. Because of this, melody in 13-EDO can be quite mind-bending and uncanny, and phrases that begin in a familiar way quickly lead to something totally unexpected.&lt;br /&gt;
Another neat facet of 13-EDO is the fact that any 12-EDO scale can be &amp;quot;turned into&amp;quot; a 13-EDO scale by either adding an extra semitone, or turning an existent semitone into a whole-tone. Because of this, melody in 13-EDO can be quite mind-bending and uncanny, and phrases that begin in a familiar way quickly lead to something totally unexpected.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc3"&gt;&lt;a name="x13 tone equal temperament / 13edo-Scales in 13edo-Compositions"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;&lt;strong&gt;Compositions&lt;/strong&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Compositions"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;&lt;strong&gt;Compositions&lt;/strong&gt;&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.microtonalmusic.net/audio/slowdance13edo.mp3" rel="nofollow"&gt;Slow Dance&lt;/a&gt; by &lt;a class="wiki_link_ext" href="http://danielthompson.blogspot.com/" rel="nofollow"&gt;Daniel Thompson&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.microtonalmusic.net/audio/slowdance13edo.mp3" rel="nofollow"&gt;Slow Dance&lt;/a&gt; by &lt;a class="wiki_link_ext" href="http://danielthompson.blogspot.com/" rel="nofollow"&gt;Daniel Thompson&lt;/a&gt;&lt;br /&gt;
Line 258: Line 260:
&lt;a class="wiki_link_ext" href="http://www.last.fm/music/City+of+the+Asleep/Map+of+an+Internal+Landscape/Blinding+White+Darkness" rel="nofollow" target="_blank"&gt;Blinding White Darkness&lt;/a&gt; by &lt;a class="wiki_link" href="/IgliashonJones"&gt;City of the Asleep&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.last.fm/music/City+of+the+Asleep/Map+of+an+Internal+Landscape/Blinding+White+Darkness" rel="nofollow" target="_blank"&gt;Blinding White Darkness&lt;/a&gt; by &lt;a class="wiki_link" href="/IgliashonJones"&gt;City of the Asleep&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="x13 tone equal temperament / 13edo-Igliashon's 13-EDO diatonic approaches"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Igliashon's 13-EDO diatonic approaches&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Igliashon's 13-EDO diatonic approaches"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Igliashon's 13-EDO diatonic approaches&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
From a temperament perspective, we can probably make the best use of 13-EDO as a 2.5.9.11.13 subgroup, but assuming our goal is to make reasonably-tonal, triad-based music, we might prefer to think in terms of subsets of this subgroup. The most accurately-tuned subsets are 2.5.9, 2.5.11, 2.5.13, and 2.11.13, and for each of these, there is a corresponding MOS generator that is maximally-efficient at producing the desired triad. For 2.5.13, the simplest generator is 4\13, with an octave-equivalent mapping &amp;lt;1 -1| (for 5 and 13), corresponding to the 3rd horogram above. For 2.11.13, the simplest generator is 3\13, with an octave-equivalent mapping &amp;lt;2 3| (for 11 and 13). This corresponds to the 2nd horogram above.&lt;br /&gt;
From a temperament perspective, we can probably make the best use of 13-EDO as a 2.5.9.11.13 subgroup, but assuming our goal is to make reasonably-tonal, triad-based music, we might prefer to think in terms of subsets of this subgroup. The most accurately-tuned subsets are 2.5.9, 2.5.11, 2.5.13, and 2.11.13, and for each of these, there is a corresponding MOS generator that is maximally-efficient at producing the desired triad. For 2.5.13, the simplest generator is 4\13, with an octave-equivalent mapping &amp;lt;1 -1| (for 5 and 13), corresponding to the 3rd horogram above. For 2.11.13, the simplest generator is 3\13, with an octave-equivalent mapping &amp;lt;2 3| (for 11 and 13). This corresponds to the 2nd horogram above.&lt;br /&gt;
Line 265: Line 267:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="x13 tone equal temperament / 13edo-Commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Commas&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="Commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Commas&lt;/h1&gt;
  13 EDO &lt;a class="wiki_link" href="/tempering%20out"&gt;tempers out&lt;/a&gt; the following &lt;a class="wiki_link" href="/comma"&gt;comma&lt;/a&gt;s. (Note: This assumes the val &amp;lt; 13 21 30 36 45 48 |.)&lt;br /&gt;
  13 EDO &lt;a class="wiki_link" href="/tempering%20out"&gt;tempers out&lt;/a&gt; the following &lt;a class="wiki_link" href="/comma"&gt;comma&lt;/a&gt;s. (Note: This assumes the val &amp;lt; 13 21 30 36 45 48 |.)&lt;br /&gt;