13edo: Difference between revisions
Wikispaces>Andrew_Heathwaite **Imported revision 288886501 - Original comment: ** |
Wikispaces>vaisvil **Imported revision 305045202 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:vaisvil|vaisvil]] and made on <tt>2012-02-25 12:56:26 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>305045202</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]] | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]] | ||
[[media type="custom" key="12670900"]] | |||
---- | ---- | ||
Line 62: | Line 63: | ||
[[@http://www.elvenminstrel.com/music/tuning/equal/13equal/13tet.htm|Upsidedown and Backwards: Explorations in 13-tone Equal Temperament]] by [[http://www.elvenminstrel.com/|David J. Finnamore]] | [[@http://www.elvenminstrel.com/music/tuning/equal/13equal/13tet.htm|Upsidedown and Backwards: Explorations in 13-tone Equal Temperament]] by [[http://www.elvenminstrel.com/|David J. Finnamore]] | ||
[[http://micro.soonlabel.com/gene_ward_smith/Others/Winchester/11%20-%2011.%2013%20octave.mp3|Comets Over Flatland 11]] by [[Randy Winchester]] | [[http://micro.soonlabel.com/gene_ward_smith/Others/Winchester/11%20-%2011.%2013%20octave.mp3|Comets Over Flatland 11]] by [[Randy Winchester]] | ||
[[http://micro.soonlabel.com/13edo/20120225-midiaxe-prelude-for-synthesizer-in-13-equal.mp3|Prelude for Synthesizer in 13 Equal]] by [[Chris Vaisvil]] | |||
[[http://micro.soonlabel.com/13edo/muon_catalyzed_fusion_13_edo.mp3|Muon Catalyzed Fusion]] by [[Chris Vaisvil|Chris Vaisvil | |||
]] | |||
=Igliashon's 13-EDO diatonic approaches= | =Igliashon's 13-EDO diatonic approaches= | ||
Line 87: | Line 91: | ||
||= 441/440 ||< | -3 2 -1 2 -1 > ||> 3.93 ||= Werckisma ||= ||= ||</pre></div> | ||= 441/440 ||< | -3 2 -1 2 -1 > ||> 3.93 ||= Werckisma ||= ||= ||</pre></div> | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>13edo</title></head><body><!-- ws:start:WikiTextTocRule: | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>13edo</title></head><body><!-- ws:start:WikiTextTocRule:17:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:17 --><!-- ws:start:WikiTextTocRule:18: --><a href="#x13 tone equal temperament / 13edo">13 tone equal temperament / 13edo</a><!-- ws:end:WikiTextTocRule:18 --><!-- ws:start:WikiTextTocRule:19: --> | <a href="#Harmony in 13edo">Harmony in 13edo</a><!-- ws:end:WikiTextTocRule:19 --><!-- ws:start:WikiTextTocRule:20: --> | <a href="#Scales in 13edo">Scales in 13edo</a><!-- ws:end:WikiTextTocRule:20 --><!-- ws:start:WikiTextTocRule:21: --><!-- ws:end:WikiTextTocRule:21 --><!-- ws:start:WikiTextTocRule:22: --> | <a href="#Animism">Animism</a><!-- ws:end:WikiTextTocRule:22 --><!-- ws:start:WikiTextTocRule:23: --> | <a href="#Compositions">Compositions</a><!-- ws:end:WikiTextTocRule:23 --><!-- ws:start:WikiTextTocRule:24: --> | <a href="#Igliashon's 13-EDO diatonic approaches">Igliashon's 13-EDO diatonic approaches</a><!-- ws:end:WikiTextTocRule:24 --><!-- ws:start:WikiTextTocRule:25: --> | <a href="#Commas">Commas</a><!-- ws:end:WikiTextTocRule:25 --><!-- ws:start:WikiTextTocRule:26: --> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:26 --><!-- ws:start:WikiTextMediaRule:0:&lt;img src=&quot;http://www.wikispaces.com/site/embedthumbnail/custom/12670900?h=0&amp;w=0&quot; class=&quot;WikiMedia WikiMediaCustom&quot; id=&quot;wikitext@@media@@type=&amp;quot;custom&amp;quot; key=&amp;quot;12670900&amp;quot;&quot; title=&quot;Custom Media&quot;/&gt; --><script type="text/javascript" src="http://webplayer.yahooapis.com/player.js"> | ||
</script><!-- ws:end:WikiTextMediaRule:0 --><br /> | |||
<hr /> | |||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:1:&lt;h1&gt; --><h1 id="toc0"><a name="x13 tone equal temperament / 13edo"></a><!-- ws:end:WikiTextHeadingRule:1 -->13 tone equal temperament / 13edo</h1> | ||
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. It is the sixth <a class="wiki_link" href="/prime%20numbers">prime</a> edo, following <a class="wiki_link" href="/11edo">11edo</a> and coming before <a class="wiki_link" href="/17edo">17edo</a>. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo).<br /> | 13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. It is the sixth <a class="wiki_link" href="/prime%20numbers">prime</a> edo, following <a class="wiki_link" href="/11edo">11edo</a> and coming before <a class="wiki_link" href="/17edo">17edo</a>. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo).<br /> | ||
Line 309: | Line 315: | ||
*based on treating 13-EDO as a 2.5.9.11.13.21 subgroup temperament; other approaches are possible.<br /> | *based on treating 13-EDO as a 2.5.9.11.13.21 subgroup temperament; other approaches are possible.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:3:&lt;h1&gt; --><h1 id="toc1"><a name="Harmony in 13edo"></a><!-- ws:end:WikiTextHeadingRule:3 -->Harmony in 13edo</h1> | ||
Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a &quot;stack of 3rds&quot; the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (degrees 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, one way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. It actually performs quite admirably in this regard, and a chord of 0-4-15-19-22 (approximating 4:5:9:11:13) sounds very convincing. An even larger subgroup is the <a class="wiki_link" href="/k%2AN%20subgroups">2*13 subgroup</a> 2.9.5.21.11.13, on which 13 has the same tuning and commas as 26et.<br /> | Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a &quot;stack of 3rds&quot; the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (degrees 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, one way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. It actually performs quite admirably in this regard, and a chord of 0-4-15-19-22 (approximating 4:5:9:11:13) sounds very convincing. An even larger subgroup is the <a class="wiki_link" href="/k%2AN%20subgroups">2*13 subgroup</a> 2.9.5.21.11.13, on which 13 has the same tuning and commas as 26et.<br /> | ||
<br /> | <br /> | ||
The 2.9.5.11.13 subgroup has commas 45/44, 65/64 and 81/80, leading to a linear temperament with POTE generator 185.728 cents, quite close to 2\13. Use this as a generator, and at 7 notes (6L1s) two full pentads are available (as well as two more 4:5:9:11 tetrad, and one 4:5:9:13 tetrad).<br /> | The 2.9.5.11.13 subgroup has commas 45/44, 65/64 and 81/80, leading to a linear temperament with POTE generator 185.728 cents, quite close to 2\13. Use this as a generator, and at 7 notes (6L1s) two full pentads are available (as well as two more 4:5:9:11 tetrad, and one 4:5:9:13 tetrad).<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:5:&lt;h1&gt; --><h1 id="toc2"><a name="Scales in 13edo"></a><!-- ws:end:WikiTextHeadingRule:5 -->Scales in 13edo</h1> | ||
Due to the prime character of the number 13, 13edo can form several xenharmonic <a class="wiki_link" href="/MOSScales">moment of symmetry scales</a>. The diagram below shows five &quot;families&quot; of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, &amp; 6\13, respectively.<br /> | Due to the prime character of the number 13, 13edo can form several xenharmonic <a class="wiki_link" href="/MOSScales">moment of symmetry scales</a>. The diagram below shows five &quot;families&quot; of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, &amp; 6\13, respectively.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:382:&lt;img src=&quot;/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg" alt="13edo_horograms.jpg" title="13edo_horograms.jpg" /><!-- ws:end:WikiTextLocalImageRule:382 --><br /> | ||
<!-- ws:start:WikiTextFileRule: | <!-- ws:start:WikiTextFileRule:385:&lt;img src=&quot;http://www.wikispaces.com/site/embedthumbnail/file/13edo%20horograms.pdf?h=52&amp;w=320&quot; class=&quot;WikiFile&quot; id=&quot;wikitext@@file@@13edo horograms.pdf&quot; title=&quot;File: 13edo horograms.pdf&quot; width=&quot;320&quot; height=&quot;52&quot; /&gt; --><div class="objectEmbed"><a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');"><img src="http://www.wikispaces.com/i/mime/32/application/pdf.png" height="32" width="32" alt="13edo horograms.pdf" /></a><div><a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');" class="filename" title="13edo horograms.pdf">13edo horograms.pdf</a><br /><ul><li><a href="/file/detail/13edo%20horograms.pdf">Details</a></li><li><a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf">Download</a></li><li style="color: #666">242 KB</li></ul></div></div><!-- ws:end:WikiTextFileRule:385 --><br /> | ||
~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson<br /> | ~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson<br /> | ||
<br /> | <br /> | ||
Another neat facet of 13-EDO is the fact that any 12-EDO scale can be &quot;turned into&quot; a 13-EDO scale by either adding an extra semitone, or turning an existent semitone into a whole-tone. Because of this, melody in 13-EDO can be quite mind-bending and uncanny, and phrases that begin in a familiar way quickly lead to something totally unexpected.<br /> | Another neat facet of 13-EDO is the fact that any 12-EDO scale can be &quot;turned into&quot; a 13-EDO scale by either adding an extra semitone, or turning an existent semitone into a whole-tone. Because of this, melody in 13-EDO can be quite mind-bending and uncanny, and phrases that begin in a familiar way quickly lead to something totally unexpected.<br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:7:&lt;h2&gt; --><h2 id="toc3"><!-- ws:end:WikiTextHeadingRule:7 --> </h2> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:9:&lt;h1&gt; --><h1 id="toc4"><a name="Animism"></a><!-- ws:end:WikiTextHeadingRule:9 -->Animism</h1> | ||
<br /> | <br /> | ||
The animist comma, 105/104, appears whenever 3*5*7=13... 26 edo approximates 3, 5, and 7 individually, however 13 edo has 21/16 (=3*7) and is also an animist temperament. In 13 edo, the 5th harmonic is tuned so flatly that 5/4 = 16/13, leading to some interesting identities. So two scales stand out through this construction<br /> | The animist comma, 105/104, appears whenever 3*5*7=13... 26 edo approximates 3, 5, and 7 individually, however 13 edo has 21/16 (=3*7) and is also an animist temperament. In 13 edo, the 5th harmonic is tuned so flatly that 5/4 = 16/13, leading to some interesting identities. So two scales stand out through this construction<br /> | ||
Line 332: | Line 338: | ||
<br /> | <br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:11:&lt;h1&gt; --><h1 id="toc5"><a name="Compositions"></a><!-- ws:end:WikiTextHeadingRule:11 --><strong>Compositions</strong></h1> | ||
<br /> | <br /> | ||
<a class="wiki_link_ext" href="http://www.microtonalmusic.net/audio/slowdance13edo.mp3" rel="nofollow">Slow Dance</a> by <a class="wiki_link_ext" href="http://danielthompson.blogspot.com/" rel="nofollow">Daniel Thompson</a><br /> | <a class="wiki_link_ext" href="http://www.microtonalmusic.net/audio/slowdance13edo.mp3" rel="nofollow">Slow Dance</a> by <a class="wiki_link_ext" href="http://danielthompson.blogspot.com/" rel="nofollow">Daniel Thompson</a><br /> | ||
Line 343: | Line 349: | ||
<a class="wiki_link_ext" href="http://www.elvenminstrel.com/music/tuning/equal/13equal/13tet.htm" rel="nofollow" target="_blank">Upsidedown and Backwards: Explorations in 13-tone Equal Temperament</a> by <a class="wiki_link_ext" href="http://www.elvenminstrel.com/" rel="nofollow">David J. Finnamore</a><br /> | <a class="wiki_link_ext" href="http://www.elvenminstrel.com/music/tuning/equal/13equal/13tet.htm" rel="nofollow" target="_blank">Upsidedown and Backwards: Explorations in 13-tone Equal Temperament</a> by <a class="wiki_link_ext" href="http://www.elvenminstrel.com/" rel="nofollow">David J. Finnamore</a><br /> | ||
<a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Winchester/11%20-%2011.%2013%20octave.mp3" rel="nofollow">Comets Over Flatland 11</a> by <a class="wiki_link" href="/Randy%20Winchester">Randy Winchester</a><br /> | <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Winchester/11%20-%2011.%2013%20octave.mp3" rel="nofollow">Comets Over Flatland 11</a> by <a class="wiki_link" href="/Randy%20Winchester">Randy Winchester</a><br /> | ||
<a class="wiki_link_ext" href="http://micro.soonlabel.com/13edo/20120225-midiaxe-prelude-for-synthesizer-in-13-equal.mp3" rel="nofollow">Prelude for Synthesizer in 13 Equal</a> by <a class="wiki_link" href="/Chris%20Vaisvil">Chris Vaisvil</a><br /> | |||
<a class="wiki_link_ext" href="http://micro.soonlabel.com/13edo/muon_catalyzed_fusion_13_edo.mp3" rel="nofollow">Muon Catalyzed Fusion</a> by <a class="wiki_link" href="/Chris%20Vaisvil">Chris Vaisvil</a><br /> | |||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:13:&lt;h1&gt; --><h1 id="toc6"><a name="Igliashon's 13-EDO diatonic approaches"></a><!-- ws:end:WikiTextHeadingRule:13 -->Igliashon's 13-EDO diatonic approaches</h1> | ||
<br /> | <br /> | ||
From a temperament perspective, we can probably make the &quot;best&quot; use of 13-EDO as a 2.5.9.11.13.21 subgroup, but assuming our goal is to make reasonably-tonal, triad-based music, we might prefer to think in terms of subsets of this subgroup. The simplest and most accurately-tuned subsets are 2.5.9, 2.5.11, 2.5.13, 2.11.13, and 2.9.21, and for each of these, there is a corresponding MOS generator that is maximally-efficient at producing the desired triad. For 2.5.13, the simplest generator is 4\13, with an octave-equivalent mapping &lt;1 -1| (for 5 and 13), corresponding to the 3rd horogram above. This gives rise to &quot;Sephiroth&quot; modes, in which the generator is any flatly tempered 13th harmonic. For 2.11.13, the simplest generator is 3\13, with an octave-equivalent mapping &lt;2 3| (for 11 and 13). This corresponds to the 2nd horogram above. This scale bears a superficial resemblance to the 9-note MOS of Orwell temperament, although its approximations to the 3rd, 5th, and 7th harmonics are much more distant than in more optimal tunings of the temperament (on the other hand, its approximations to the 11th and 13th harmonics are much better than in optimal tunings of the temperament).<br /> | From a temperament perspective, we can probably make the &quot;best&quot; use of 13-EDO as a 2.5.9.11.13.21 subgroup, but assuming our goal is to make reasonably-tonal, triad-based music, we might prefer to think in terms of subsets of this subgroup. The simplest and most accurately-tuned subsets are 2.5.9, 2.5.11, 2.5.13, 2.11.13, and 2.9.21, and for each of these, there is a corresponding MOS generator that is maximally-efficient at producing the desired triad. For 2.5.13, the simplest generator is 4\13, with an octave-equivalent mapping &lt;1 -1| (for 5 and 13), corresponding to the 3rd horogram above. This gives rise to &quot;Sephiroth&quot; modes, in which the generator is any flatly tempered 13th harmonic. For 2.11.13, the simplest generator is 3\13, with an octave-equivalent mapping &lt;2 3| (for 11 and 13). This corresponds to the 2nd horogram above. This scale bears a superficial resemblance to the 9-note MOS of Orwell temperament, although its approximations to the 3rd, 5th, and 7th harmonics are much more distant than in more optimal tunings of the temperament (on the other hand, its approximations to the 11th and 13th harmonics are much better than in optimal tunings of the temperament).<br /> | ||
Line 353: | Line 361: | ||
<br /> | <br /> | ||
To facilitate discussion of these scales, Igliashon has ascribed them names based on H.P. Lovecraft's &quot;Dream Cycle&quot; mythos. The 2\13-based heptatonic has been named &quot;archeotonic&quot; after the &quot;Old Ones&quot; that rule the Dreamlands, and the 5\13-based octatonic has been named &quot;oneirotonic&quot; after the Dreamlands themselves. Modes of the archeotonic are named after the individual Old Ones themselves; modes of the oneirotonic are named after cities in the Dreamlands. See the charts of modes of the two scales below, excerpted from Igliashon's forthcoming paper &quot;The Case for Thirteen&quot;:<br /> | To facilitate discussion of these scales, Igliashon has ascribed them names based on H.P. Lovecraft's &quot;Dream Cycle&quot; mythos. The 2\13-based heptatonic has been named &quot;archeotonic&quot; after the &quot;Old Ones&quot; that rule the Dreamlands, and the 5\13-based octatonic has been named &quot;oneirotonic&quot; after the Dreamlands themselves. Modes of the archeotonic are named after the individual Old Ones themselves; modes of the oneirotonic are named after cities in the Dreamlands. See the charts of modes of the two scales below, excerpted from Igliashon's forthcoming paper &quot;The Case for Thirteen&quot;:<br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:383:&lt;img src=&quot;/file/view/Archeotonic.png/252639498/Archeotonic.png&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/Archeotonic.png/252639498/Archeotonic.png" alt="Archeotonic.png" title="Archeotonic.png" /><!-- ws:end:WikiTextLocalImageRule:383 --><br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:384:&lt;img src=&quot;/file/view/Oneirotonic.png/252639860/Oneirotonic.png&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/Oneirotonic.png/252639860/Oneirotonic.png" alt="Oneirotonic.png" title="Oneirotonic.png" /><!-- ws:end:WikiTextLocalImageRule:384 --><br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:15:&lt;h1&gt; --><h1 id="toc7"><a name="Commas"></a><!-- ws:end:WikiTextHeadingRule:15 -->Commas</h1> | ||
13 EDO <a class="wiki_link" href="/tempering%20out">tempers out</a> the following <a class="wiki_link" href="/comma">comma</a>s. (Note: This assumes the val &lt; 13 21 30 36 45 48 |.)<br /> | 13 EDO <a class="wiki_link" href="/tempering%20out">tempers out</a> the following <a class="wiki_link" href="/comma">comma</a>s. (Note: This assumes the val &lt; 13 21 30 36 45 48 |.)<br /> | ||