1200edo: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 236716894 - Original comment: **
 
Wikispaces>hstraub
**Imported revision 239085981 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-06-14 21:16:46 UTC</tt>.<br>
: This revision was by author [[User:hstraub|hstraub]] and made on <tt>2011-06-28 02:42:41 UTC</tt>.<br>
: The original revision id was <tt>236716894</tt>.<br>
: The original revision id was <tt>239085981</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //1200 division// divides the octave in 1200 equal parts of exactly 1 [[cent]] each. It is notable mostly because it is the equal division corresponding to cents.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //1200 division// divides the octave in 1200 equal parts of exactly 1 [[cent]] each. It is notable mostly because it is the equal division corresponding to cents.


1200edo is uniquely consistent through the [[11-limit]], which means the intervals of the 11-limit tonality diamond, and hence their size in cents rounded to the nearest integer, can be found by applying the 11-limit patent val &lt;1200 1902 2786 3369 4141|. It is [[contorted]] in the [[5-limit]], having the same mapping as 600edo. In the [[7-limit]], it tempers out 2460375/2458624 and 95703125/95551488, leading to a temperament it supports with a period of 1/3 octave and a generator which is an approximate 225/224 of 7\1200, also supported by [[171edo]]. In the 11-limit, it tempers out 9801/9800, 234375/234256 and 825000/823543, leading to a temperament with a half-octave period and an approximate 99/98 generator of 17\1200, also supported by [[494edo]].</pre></div>
1200edo is uniquely [[consistent]] through the [[11-limit]], which means the intervals of the 11-limit[[tonality diamond| tonality diamond]], and hence their size in cents rounded to the nearest integer, can be found by applying the 11-limit patent val &lt;1200 1902 2786 3369 4141|. It is [[contorted]] in the [[5-limit]], having the same mapping as 600edo. In the [[7-limit]], it tempers out 2460375/2458624 and 95703125/95551488, leading to a temperament it supports with a period of 1/3 octave and a generator which is an approximate 225/224 of 7\1200, also supported by [[171edo]]. In the 11-limit, it tempers out 9801/9800, 234375/234256 and 825000/823543, leading to a temperament with a half-octave period and an approximate 99/98 generator of 17\1200, also supported by [[494edo]].</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;1200edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;em&gt;1200 division&lt;/em&gt; divides the octave in 1200 equal parts of exactly 1 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt; each. It is notable mostly because it is the equal division corresponding to cents.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;1200edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;em&gt;1200 division&lt;/em&gt; divides the octave in 1200 equal parts of exactly 1 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt; each. It is notable mostly because it is the equal division corresponding to cents.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
1200edo is uniquely consistent through the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt;, which means the intervals of the 11-limit tonality diamond, and hence their size in cents rounded to the nearest integer, can be found by applying the 11-limit patent val &amp;lt;1200 1902 2786 3369 4141|. It is &lt;a class="wiki_link" href="/contorted"&gt;contorted&lt;/a&gt; in the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt;, having the same mapping as 600edo. In the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, it tempers out 2460375/2458624 and 95703125/95551488, leading to a temperament it supports with a period of 1/3 octave and a generator which is an approximate 225/224 of 7\1200, also supported by &lt;a class="wiki_link" href="/171edo"&gt;171edo&lt;/a&gt;. In the 11-limit, it tempers out 9801/9800, 234375/234256 and 825000/823543, leading to a temperament with a half-octave period and an approximate 99/98 generator of 17\1200, also supported by &lt;a class="wiki_link" href="/494edo"&gt;494edo&lt;/a&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>
1200edo is uniquely &lt;a class="wiki_link" href="/consistent"&gt;consistent&lt;/a&gt; through the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt;, which means the intervals of the 11-limit&lt;a class="wiki_link" href="/tonality%20diamond"&gt; tonality diamond&lt;/a&gt;, and hence their size in cents rounded to the nearest integer, can be found by applying the 11-limit patent val &amp;lt;1200 1902 2786 3369 4141|. It is &lt;a class="wiki_link" href="/contorted"&gt;contorted&lt;/a&gt; in the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt;, having the same mapping as 600edo. In the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, it tempers out 2460375/2458624 and 95703125/95551488, leading to a temperament it supports with a period of 1/3 octave and a generator which is an approximate 225/224 of 7\1200, also supported by &lt;a class="wiki_link" href="/171edo"&gt;171edo&lt;/a&gt;. In the 11-limit, it tempers out 9801/9800, 234375/234256 and 825000/823543, leading to a temperament with a half-octave period and an approximate 99/98 generator of 17\1200, also supported by &lt;a class="wiki_link" href="/494edo"&gt;494edo&lt;/a&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>