Consistency: Difference between revisions
m "very closer slightly closer" to "slightly closer" |
Added a paragraph with examples of non-unique consistency. |
||
Line 18: | Line 18: | ||
One notable example: [[46edo]] is not consistent in the 15 odd limit. The 15:13 interval is slightly closer to 9 degrees of 46edo than to 10 degrees, but the ''functional'' [[15/13]] (the difference between 46edo's versions of [[15/8]] and [[13/8]]) is 10 degrees. However, if we compress the octave slightly (by about a cent), this discrepancy no longer occurs, and we end up with an 18-''integer''-limit consistent system, which makes it ideal for approximating mode 8 of the harmonic series. | One notable example: [[46edo]] is not consistent in the 15 odd limit. The 15:13 interval is slightly closer to 9 degrees of 46edo than to 10 degrees, but the ''functional'' [[15/13]] (the difference between 46edo's versions of [[15/8]] and [[13/8]]) is 10 degrees. However, if we compress the octave slightly (by about a cent), this discrepancy no longer occurs, and we end up with an 18-''integer''-limit consistent system, which makes it ideal for approximating mode 8 of the harmonic series. | ||
Examples on consistency vs. unique consistency: In [[12edo]] the [[7-odd-limit]] intervals 6/5 and 7/6 are both consistently mapped to 3 steps, and although 12edo is consistent up to the [[9-odd-limit]], it is uniquely consistent only up to the [[5-odd-limit]]. Another example or non-unique consistency is given by the intervals 14/13 and 13/12 in [[72edo]] where they are both mapped to 8 steps. Although 72edo is consistent up to the [[17-odd-limit]], it is uniquely consistent only up to the [[11-odd-limit]]. | |||
==Generalization to non-octave scales== | ==Generalization to non-octave scales== |