|
|
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | This MOS, generated by any interval up to a diatonic semitone of 1/10edo (120 cents), is called the "Happy" decatonic scale. It is the simplest MOS which may be used as a complete version of Miracle temperamet, which is also its harmonic entropy minimum. |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-11-06 10:53:18 UTC</tt>.<br>
| |
| : The original revision id was <tt>565454719</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This MOS, generated by any interval up to a diatonic semitone of 1/10edo (120 cents), is called the "Happy" decatonic scale. It is the simplest MOS which may be used as a complete version of Miracle temperamet, which is also its harmonic entropy minimum.
| |
| ||||||||||~ Generator
| |
| (octave fraction) ||~ Generator
| |
| (cents) ||~ Comments ||
| |
| || 0\1 || || || || || 0 ||= ||
| |
| || || || || || 1\14 || 85.714 ||= ||
| |
| || || || || 1\13 || || 92.308 ||= L/s = 4 ||
| |
| || || || || || 2\25 || 96 ||= ||
| |
| || || || || || || 1200/(9+pi) || ||
| |
| || || || 1\12 || || || 100 ||= L/s = 3 ||
| |
| || || || || || || 1200/(9+e) || ||
| |
| || || || || || 3\35 || 102.857 ||= ||
| |
| || || || || || || 1200/(10+phi) || ||
| |
| || || || || 2\23 || || 104.348 ||= ||
| |
| || || || || || 3\34 || 105.882 ||= ||
| |
| || || 1\11 || || || || 109.091 ||= ||
| |
| || || || || || || 1200/(9+sqrt(3)) || ||
| |
| || || || || || 4\43 || 111.628 ||= ||
| |
| || || || || 3\32 || || 112.5 ||= ||
| |
| || || || || || || 1200/(9+phi) || ||
| |
| || || || || || 5\53 || 113.2075 ||= ||
| |
| || || || || || || 1200/(9+pi/2) || ||
| |
| || || || 2\21 || || || 114.286 ||= ||
| |
| || || || || || 5\52 || 115.385 ||= ||
| |
| || || || || 3\31 || || 116.129 ||= ||
| |
| || || || || || 4\41 || 117.073 ||= ||
| |
| || 1\10 || || || || || 120 ||= ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>1L 9s</title></head><body>This MOS, generated by any interval up to a diatonic semitone of 1/10edo (120 cents), is called the &quot;Happy&quot; decatonic scale. It is the simplest MOS which may be used as a complete version of Miracle temperamet, which is also its harmonic entropy minimum.<br />
| |
|
| |
|
| | {| class="wikitable" |
| | |- |
| | ! colspan="5" | Generator |
|
| |
|
| <table class="wiki_table">
| | (octave fraction) |
| <tr>
| | ! | Generator |
| <th colspan="5">Generator<br />
| |
| (octave fraction)<br /> | |
| </th>
| |
| <th>Generator<br />
| |
| (cents)<br />
| |
| </th>
| |
| <th>Comments<br />
| |
| </th>
| |
| </tr>
| |
| <tr>
| |
| <td>0\1<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>0<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1\14<br />
| |
| </td>
| |
| <td>85.714<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1\13<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>92.308<br />
| |
| </td>
| |
| <td style="text-align: center;">L/s = 4<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>2\25<br />
| |
| </td>
| |
| <td>96<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1200/(9+pi)<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1\12<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>100<br />
| |
| </td>
| |
| <td style="text-align: center;">L/s = 3<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1200/(9+e)<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3\35<br />
| |
| </td>
| |
| <td>102.857<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1200/(10+phi)<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>2\23<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>104.348<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3\34<br />
| |
| </td>
| |
| <td>105.882<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>1\11<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>109.091<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1200/(9+sqrt(3))<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4\43<br />
| |
| </td>
| |
| <td>111.628<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3\32<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>112.5<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1200/(9+phi)<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\53<br />
| |
| </td>
| |
| <td>113.2075<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1200/(9+pi/2)<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>2\21<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>114.286<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\52<br />
| |
| </td>
| |
| <td>115.385<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3\31<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>116.129<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4\41<br />
| |
| </td>
| |
| <td>117.073<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1\10<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>120<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | (cents) |
| | ! | Comments |
| | |- |
| | | | 0\1 |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | 0 |
| | | style="text-align:center;" | |
| | |- |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | 1\14 |
| | | | 85.714 |
| | | style="text-align:center;" | |
| | |- |
| | | | |
| | | | |
| | | | |
| | | | 1\13 |
| | | | |
| | | | 92.308 |
| | | style="text-align:center;" | L/s = 4 |
| | |- |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | 2\25 |
| | | | 96 |
| | | style="text-align:center;" | |
| | |- |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | 1200/(9+pi) |
| | | | |
| | |- |
| | | | |
| | | | |
| | | | 1\12 |
| | | | |
| | | | |
| | | | 100 |
| | | style="text-align:center;" | L/s = 3 |
| | |- |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | 1200/(9+e) |
| | | | |
| | |- |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | 3\35 |
| | | | 102.857 |
| | | style="text-align:center;" | |
| | |- |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | 1200/(10+phi) |
| | | | |
| | |- |
| | | | |
| | | | |
| | | | |
| | | | 2\23 |
| | | | |
| | | | 104.348 |
| | | style="text-align:center;" | |
| | |- |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | 3\34 |
| | | | 105.882 |
| | | style="text-align:center;" | |
| | |- |
| | | | |
| | | | 1\11 |
| | | | |
| | | | |
| | | | |
| | | | 109.091 |
| | | style="text-align:center;" | |
| | |- |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | 1200/(9+sqrt(3)) |
| | | | |
| | |- |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | 4\43 |
| | | | 111.628 |
| | | style="text-align:center;" | |
| | |- |
| | | | |
| | | | |
| | | | |
| | | | 3\32 |
| | | | |
| | | | 112.5 |
| | | style="text-align:center;" | |
| | |- |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | 1200/(9+phi) |
| | | | |
| | |- |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | 5\53 |
| | | | 113.2075 |
| | | style="text-align:center;" | |
| | |- |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | 1200/(9+pi/2) |
| | | | |
| | |- |
| | | | |
| | | | |
| | | | 2\21 |
| | | | |
| | | | |
| | | | 114.286 |
| | | style="text-align:center;" | |
| | |- |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | 5\52 |
| | | | 115.385 |
| | | style="text-align:center;" | |
| | |- |
| | | | |
| | | | |
| | | | |
| | | | 3\31 |
| | | | |
| | | | 116.129 |
| | | style="text-align:center;" | |
| | |- |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | 4\41 |
| | | | 117.073 |
| | | style="text-align:center;" | |
| | |- |
| | | | 1\10 |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | 120 |
| | | style="text-align:center;" | |
| | |} |