Overtone scale: Difference between revisions
m category maintenance, clean up formatting |
m error corrections |
||
Line 1: | Line 1: | ||
This page was originally developed by [[Andrew Heathwaite]], but others are welcome to add to it. For another take on the subject, see [[Mike Sheiman's Very Easy Scale Building From The Harmonic Series Page]]. This article focuses on a systematic approach to building modes of the harmonic series and taking subsets of it, with attention paid to the different kinds of relationships available depending on the starting pitch, or tonic notes. It is not concerned with "purity", "consonance", "naturalness" or avoidance of "dissonance." Here, what might be called dissonant is | This page was originally developed by [[Andrew Heathwaite]], but others are welcome to add to it. For another take on the subject, see [[Mike Sheiman's Very Easy Scale Building From The Harmonic Series Page]]. This article focuses on a systematic approach to building modes of the harmonic series and taking subsets of it, with attention paid to the different kinds of relationships available depending on the starting pitch, or tonic notes. It is not concerned with "purity", "consonance", "naturalness" or avoidance of "dissonance." Here, what might be called dissonant is instead called complex, and the reader is encouraged to explore the sounds of harmonic ratios ranging from the simplest to the most complex. This does not mean that the more complex intervals can be treated exactly the same way as the simpler ones, but that different levels of complexity can be valuable to explore in a tuning system. The usefulness of all this is left to each composer to determine through experimentation. | ||
Line 137: | Line 137: | ||
Mode 26 -- 26:27:28:29:30:31:32:33:34:35:36:37:38:39:40:41:42:43:44:45:46:47:48:49:50:51:52 -- 39/26 is a 3/2 perfect fifth. Root-3rd-P5 chords include the tridecimal inframinor 26:30:39; a 31-limit minor triad at 26:31:39 (oddly normal-sounding on its own); a tridecimal neutral triad at 26:32:39; and a wide tridecimal major at 26:33:39. As odd harmonics go up to 51, a great variety is possible here. | Mode 26 -- 26:27:28:29:30:31:32:33:34:35:36:37:38:39:40:41:42:43:44:45:46:47:48:49:50:51:52 -- 39/26 is a 3/2 perfect fifth. Root-3rd-P5 chords include the tridecimal inframinor 26:30:39; a 31-limit minor triad at 26:31:39 (oddly normal-sounding on its own); a tridecimal neutral triad at 26:32:39; and a wide tridecimal major at 26:33:39. As odd harmonics go up to 51, a great variety is possible here. | ||
== = | ===Over-15 Scales=== | ||
Mode 15 -- 15:16:17:18:19:20:21:22:23:24:25:26:27:28:29:30 | Mode 15 -- 15:16:17:18:19:20:21:22:23:24:25:26:27:28:29:30 |