The Archipelago: Difference between revisions

Wikispaces>mbattaglia1
**Imported revision 630873021 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
__FORCETOC__
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
The archipelago is a rag-tag collection of various regular temperaments of different ranks, including subgroup temperaments, associated with island temperament: the rank five thirteen limit temperament tempering out the island comma, 676/675. Common to all of them is the observation that two intervals of 15/13 are equated with a fourth. Hence a 1-15/13-4/3 chord is a characteristic island chord, and 15/13 tends to be of low complexity. Also characteristic is the barbados triad, the 1-13/10-3/2 triad, as well as its inversion 1-15/13-3/2, the barbados tetrad, 1-13/10-3/2-26/15, plus the tetrads 1-13/10-3/2-8/5 and 1-13/10-3/2-9/5. The [[Just_intonation_subgroups|just intonation subgroup]] generated by 2, 4/3 and 15/13 is 2.3.13/5, and the barbados triad and tetrad are found in that, while the other two tetrads are found in the larger 2.3.5.13 subgroup.
: This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2018-07-12 03:06:08 UTC</tt>.<br>
: The original revision id was <tt>630873021</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
The archipelago is a rag-tag collection of various regular temperaments of different ranks, including subgroup temperaments, associated with island temperament: the rank five thirteen limit temperament tempering out the island comma, 676/675. Common to all of them is the observation that two intervals of 15/13 are equated with a fourth. Hence a 1-15/13-4/3 chord is a characteristic island chord, and 15/13 tends to be of low complexity. Also characteristic is the barbados triad, the 1-13/10-3/2 triad, as well as its inversion 1-15/13-3/2, the barbados tetrad, 1-13/10-3/2-26/15, plus the tetrads 1-13/10-3/2-8/5 and 1-13/10-3/2-9/5. The [[Just intonation subgroups|just intonation subgroup]] generated by 2, 4/3 and 15/13 is 2.3.13/5, and the barbados triad and tetrad are found in that, while the other two tetrads are found in the larger 2.3.5.13 subgroup.


The barbados triad is of particular theoretical interest because, when reduced to lowest terms, it is the 10:13:15 triad. Thus, this triad is only slightly higher in complexity than the 5-limit 10:12:15 minor triad, which means it may be of distinct value as a relatively unexplored musical consonance. It is one of only a few low-complexity triads with a 3/2 on the outer dyad, some others being 4:5:6, 6:7:9, and 10:12:15. It works out to 0-454-702 cents, which means that it is an //ultramajor// triad, with a third sharper even than the 9/7 supermajor third.
The barbados triad is of particular theoretical interest because, when reduced to lowest terms, it is the 10:13:15 triad. Thus, this triad is only slightly higher in complexity than the 5-limit 10:12:15 minor triad, which means it may be of distinct value as a relatively unexplored musical consonance. It is one of only a few low-complexity triads with a 3/2 on the outer dyad, some others being 4:5:6, 6:7:9, and 10:12:15. It works out to 0-454-702 cents, which means that it is an ''ultramajor'' triad, with a third sharper even than the 9/7 supermajor third.


Compared to the 7-limit 14:18:21 supermajor triad, 10:13:15 is lower in triadic complexity (10:13:15 vs 14:18:21), but contains dyads that are on average higher in complexity (9/7 vs 13/10 and 7/6 vs 15/13). Its inverse, however, is the ultraminor 26:30:39, which is far more complex than the 7-limit subminor 6:7:9. Temperaments in which 91/90 vanishes equate the two types of triads.
Compared to the 7-limit 14:18:21 supermajor triad, 10:13:15 is lower in triadic complexity (10:13:15 vs 14:18:21), but contains dyads that are on average higher in complexity (9/7 vs 13/10 and 7/6 vs 15/13). Its inverse, however, is the ultraminor 26:30:39, which is far more complex than the 7-limit subminor 6:7:9. Temperaments in which 91/90 vanishes equate the two types of triads.


[[24edo]] approximates this triad to within an error of four cents, and [[29edo]] does even better, getting it to within 1.5 cents; either may be used as a tuning for the barbados temperament discussed below.
[[24edo|24edo]] approximates this triad to within an error of four cents, and [[29edo|29edo]] does even better, getting it to within 1.5 cents; either may be used as a tuning for the barbados temperament discussed below.


=Parent Temperaments=  
=Parent Temperaments=
=Island=  
 
=Island=
Comma: 676/675
Comma: 676/675


Map:
Map:
&lt;1 0 0 0 0 -1|
&lt;1 0 0 0 0 -1|
&lt;0 2 0 0 0 3|
&lt;0 2 0 0 0 3|
&lt;0 0 1 0 0 1|
&lt;0 0 1 0 0 1|
&lt;0 0 0 1 0 0|
&lt;0 0 0 1 0 0|
&lt;0 0 0 0 1 0|
&lt;0 0 0 0 1 0|
EDOs: 5, 9, 10, 15, 19, 24, 29, 43, 53, 58, 72, 87, 111, 121, 130, 183, 940
EDOs: 5, 9, 10, 15, 19, 24, 29, 43, 53, 58, 72, 87, 111, 121, 130, 183, 940
[[Optimal patent val]]: [[940edo]]


==[[#Subgroup temperaments-Barbados]]Barbados==  
[[Optimal_patent_val|Optimal patent val]]: [[940edo|940edo]]
 
==Barbados==
Subgroup: 2.3.13/5
Subgroup: 2.3.13/5
Commas: 676/675
Commas: 676/675


Perhaps the simplest method of making use of the barbados triad and other characteristic island harmonies is to strip things down to essentials by tempering the 2.3.13/5 [[Just intonation subgroups|just intontation subgroup]]. The minimax tuning for this makes the generator 2/sqrt(3), or 249.0225 cents. EDOs which may be used for it are [[24edo]], [[29edo]], [[53edo]] and [[111edo]], with MOS of size 5, 9, 14, 19, 24 and 29 making for a good variety of scales.
Perhaps the simplest method of making use of the barbados triad and other characteristic island harmonies is to strip things down to essentials by tempering the 2.3.13/5 [[Just_intonation_subgroups|just intontation subgroup]]. The minimax tuning for this makes the generator 2/sqrt(3), or 249.0225 cents. EDOs which may be used for it are [[24edo|24edo]], [[29edo|29edo]], [[53edo|53edo]] and [[111edo|111edo]], with MOS of size 5, 9, 14, 19, 24 and 29 making for a good variety of scales.
 
[[POTE_tuning|POTE generator]]: ~15/13 = 248.621


[[POTE tuning|POTE generator]]: ~15/13 = 248.621
[[Smonzos_and_Svals|Sval map]]: [&lt;1 0 -1|, &lt;0 2 3|]


[[Smonzos and Svals|Sval map]]: [&lt;1 0 -1|, &lt;0 2 3|]
EDOs: 5, 9, 14, 19, 24, 29, 53, 82, 111, 140, 251, 362
EDOs: 5, 9, 14, 19, 24, 29, 53, 82, 111, 140, 251, 362
Badness: 0.002335
Badness: 0.002335


=Rank four temperaments=


=Rank four temperaments=
==1001/1000==
 
==1001/1000==  
Commas: 676/675, 1001/1000
Commas: 676/675, 1001/1000


EDOs: 15, 19, 29, 43, 53, 58, 72, 87, 111, 130, 183, 198, 270, 940
EDOs: 15, 19, 29, 43, 53, 58, 72, 87, 111, 130, 183, 198, 270, 940
[[Optimal patent val]]: [[940edo]]


==49/48==  
[[Optimal_patent_val|Optimal patent val]]: [[940edo|940edo]]
 
==49/48==
Commas: 49/48, 91/90
Commas: 49/48, 91/90


==1716/1715==  
==1716/1715==
Commas: 676/675, 1716/1715
Commas: 676/675, 1716/1715


==364/363==  
==364/363==
Commas: 364/363, 676/675
Commas: 364/363, 676/675


===351/350===  
===351/350===
Commas: 351/350, 676/675
Commas: 351/350, 676/675


=Rank three temperaments=  
=Rank three temperaments=


==[[Breed family|Greenland]]==  
==[[Breed_family|Greenland]]==
Commas: 676/675, 1001/1000, 1716/1715
Commas: 676/675, 1001/1000, 1716/1715


Map: [&lt;2 0 1 3 7 -1|, &lt;0 2 1 1 -2 4|, &lt;0 0 2 1 3 2|]
Map: [&lt;2 0 1 3 7 -1|, &lt;0 2 1 1 -2 4|, &lt;0 0 2 1 3 2|]
Edos: 58, 72, 130, 198, 270, 940
Edos: 58, 72, 130, 198, 270, 940
[[Optimal patent val]]: [[940edo]]
 
[[Optimal_patent_val|Optimal patent val]]: [[940edo|940edo]]
 
Badness: 0.000433
Badness: 0.000433


[[Spectrum of a temperament|Spectrum]]: 15/13, 7/5, 8/7, 7/6, 4/3, 15/14, 5/4, 18/13, 13/12, 14/13, 13/10, 6/5, 16/15, 11/10, 9/7, 9/8, 16/13, 10/9, 14/11, 11/8, 15/11, 12/11, 13/11, 11/9
[[Spectrum_of_a_temperament|Spectrum]]: 15/13, 7/5, 8/7, 7/6, 4/3, 15/14, 5/4, 18/13, 13/12, 14/13, 13/10, 6/5, 16/15, 11/10, 9/7, 9/8, 16/13, 10/9, 14/11, 11/8, 15/11, 12/11, 13/11, 11/9


 
==[[Werckismic_temperaments|History]]==
==[[Werckismic temperaments|History]]==  
Commas: 364/363, 441/440, 1001/1000
Commas: 364/363, 441/440, 1001/1000


EDOs: 15, 29, 43, 58, 72, 87, 130, 217, 289
EDOs: 15, 29, 43, 58, 72, 87, 130, 217, 289
[[Optimal patent val]]: [[289edo]]
 
[[Optimal_patent_val|Optimal patent val]]: [[289edo|289edo]]
 
Badness: 0.000540
Badness: 0.000540


Spectrum: 11/10, 15/13, 14/11, 4/3, 7/5, 5/4, 11/8, 18/13, 15/11, 13/12, 13/10, 6/5, 8/7, 16/15, 12/11, 13/11, 9/8, 16/13, 15/14, 10/9, 7/6, 11/9, 14/13, 9/7
Spectrum: 11/10, 15/13, 14/11, 4/3, 7/5, 5/4, 11/8, 18/13, 15/11, 13/12, 13/10, 6/5, 8/7, 16/15, 12/11, 13/11, 9/8, 16/13, 15/14, 10/9, 7/6, 11/9, 14/13, 9/7


==Borneo==  
==Borneo==
Commas: 676/675, 1001/1000, 3025/3024
Commas: 676/675, 1001/1000, 3025/3024


Map: [&lt;3 0 0 4 8 -3|, &lt;0 2 0 -4 1 3|, &lt;0 0 1 2 0 1|]
Map: [&lt;3 0 0 4 8 -3|, &lt;0 2 0 -4 1 3|, &lt;0 0 1 2 0 1|]
EDOs: 15, 72, 87, 111, 159, 183, 198, 270
EDOs: 15, 72, 87, 111, 159, 183, 198, 270
[[Optimal patent val]]: [[270edo]]
 
[[Optimal_patent_val|Optimal patent val]]: [[270edo|270edo]]
 
Badness: 0.000549
Badness: 0.000549


Spectrum: 12/11, 15/13, 11/8, 4/3, 11/10, 18/13, 6/5, 5/4, 13/12, 15/11, 11/9, 13/10, 10/9, 7/5, 16/15, 13/11, 9/8, 16/13, 8/7, 14/11, 15/14, 7/6, 14/13, 9/7
Spectrum: 12/11, 15/13, 11/8, 4/3, 11/10, 18/13, 6/5, 5/4, 13/12, 15/11, 11/9, 13/10, 10/9, 7/5, 16/15, 13/11, 9/8, 16/13, 8/7, 14/11, 15/14, 7/6, 14/13, 9/7


==Sumatra==  
==Sumatra==
Commas: 325/324, 385/384, 625/624
Commas: 325/324, 385/384, 625/624


EDOs: 15, 19, 34, 53, 72, 87, 140, 159, 212, 299
EDOs: 15, 19, 34, 53, 72, 87, 140, 159, 212, 299
Optimal patent val: [[299edo]]
 
Optimal patent val: [[299edo|299edo]]
 
Badness: 0.000680
Badness: 0.000680


==[[Cataharry family|Madagascar]]==  
==[[Cataharry_family|Madagascar]]==
Commas: 351/350, 540/539, 676/675
Commas: 351/350, 540/539, 676/675


EDOs: 19, 53, 58, 72, 111, 130, 183, 313
EDOs: 19, 53, 58, 72, 111, 130, 183, 313
[[Optimal patent val]]: [[313edo]]
 
[[Optimal_patent_val|Optimal patent val]]: [[313edo|313edo]]
 
Badness: 0.000560
Badness: 0.000560


Spectrum: 15/13, 4/3, 13/10, 10/9, 6/5, 9/7, 18/13, 9/8, 5/4, 7/6, 13/12, 15/14, 16/15, 14/13, 8/7, 7/5, 16/13, 11/10, 15/11, 11/8, 12/11, 13/11, 11/9, 14/11
Spectrum: 15/13, 4/3, 13/10, 10/9, 6/5, 9/7, 18/13, 9/8, 5/4, 7/6, 13/12, 15/14, 16/15, 14/13, 8/7, 7/5, 16/13, 11/10, 15/11, 11/8, 12/11, 13/11, 11/9, 14/11
[[madagascar19]]


==Baffin==  
[[madagascar19|madagascar19]]
 
==Baffin==
Commas: 676/675, 1001/1000, 4225/4224
Commas: 676/675, 1001/1000, 4225/4224


Map: [&lt;1 0 0 13 -9 1|, &lt;0 2 0 -7 4 3|, &lt;0 0 1 -2 4 1|]
Map: [&lt;1 0 0 13 -9 1|, &lt;0 2 0 -7 4 3|, &lt;0 0 1 -2 4 1|]
EDOs: 34, 43, 53, 87, 130, 183, 217, 270, 940
EDOs: 34, 43, 53, 87, 130, 183, 217, 270, 940
[[Optimal patent val]]: [[940edo]]
 
[[Optimal_patent_val|Optimal patent val]]: [[940edo|940edo]]
 
Badness: 0.000604
Badness: 0.000604


Spectrum: 15/13, 16/15, 13/12, 4/3, 16/13, 5/4, 18/13, 13/10, 6/5, 9/8, 11/10, 8/7, 7/5, 15/11, 10/9, 13/11, 15/14, 11/8, 7/6, 14/13, 12/11, 9/7, 11/9, 14/11
Spectrum: 15/13, 16/15, 13/12, 4/3, 16/13, 5/4, 18/13, 13/10, 6/5, 9/8, 11/10, 8/7, 7/5, 15/11, 10/9, 13/11, 15/14, 11/8, 7/6, 14/13, 12/11, 9/7, 11/9, 14/11


==Kujuku==  
==Kujuku==
Commas: 352/351, 364/363, 676/675
Commas: 352/351, 364/363, 676/675


Map: [&lt;1 0 0 -13 -6 -1|, &lt;0 2 0 17 9 3|, &lt;0 0 1 1 1 1|]
Map: [&lt;1 0 0 -13 -6 -1|, &lt;0 2 0 17 9 3|, &lt;0 0 1 1 1 1|]
EDOs: 24, 29, 58, 87, 121, 145, 208, 266ef, 474bef
EDOs: 24, 29, 58, 87, 121, 145, 208, 266ef, 474bef
[[Optimal patent val]]: [[208edo]]
 
[[Optimal_patent_val|Optimal patent val]]: [[208edo|208edo]]
 
Badness: 0.001060
Badness: 0.001060


Spectrum: 15/13, 4/3, 13/10, 9/8, 13/11, 15/11, 12/11, 11/9, 11/8, 14/11, 16/13, 16/15, 11/10, 13/12, 9/7, 5/4, 18/13, 7/6, 6/5, 8/7, 10/9, 14/13, 15/14, 7/5
Spectrum: 15/13, 4/3, 13/10, 9/8, 13/11, 15/11, 12/11, 11/9, 11/8, 14/11, 16/13, 16/15, 11/10, 13/12, 9/7, 5/4, 18/13, 7/6, 6/5, 8/7, 10/9, 14/13, 15/14, 7/5


=Rank two temperaments=  
=Rank two temperaments=
Rank two temperaments tempering out 676/675 include the 13-limit versions of [[Ragismic microtemperaments|hemiennealimmal]], [[Breedsmic temperaments|harry]], [[Kleismic family|tritikleismic]], [[Kleismic family|catakleimsic]], [[Marvel temperaments|negri]], [[Hemifamity temperaments|mystery]], [[Hemifamity temperaments|buzzard]], [[Kleismic family|quadritikleismic]].
Rank two temperaments tempering out 676/675 include the 13-limit versions of [[Ragismic_microtemperaments|hemiennealimmal]], [[Breedsmic_temperaments|harry]], [[Kleismic_family|tritikleismic]], [[Kleismic_family|catakleimsic]], [[Marvel_temperaments|negri]], [[Hemifamity_temperaments|mystery]], [[Hemifamity_temperaments|buzzard]], [[Kleismic_family|quadritikleismic]].


It is interesting to note the Graham complexity of 15/13 in these temperaments. This is 18 in hemiennealimmal, 6 in harry, 9 in tritikleismic, 3 in catakleismic, 2 in negri, 2 in buzzard, 12 in quadritikleismic. Catakleismic and buzzard are particularly interesting from an archipelago point of view. Mystery is special case, since the 15/13 part of it belongs to [[29edo]] alone.
It is interesting to note the Graham complexity of 15/13 in these temperaments. This is 18 in hemiennealimmal, 6 in harry, 9 in tritikleismic, 3 in catakleismic, 2 in negri, 2 in buzzard, 12 in quadritikleismic. Catakleismic and buzzard are particularly interesting from an archipelago point of view. Mystery is special case, since the 15/13 part of it belongs to [[29edo|29edo]] alone.


==Decitonic==  
==Decitonic==
Commas: 676/675, 1001/1000, 1716/1715, 4225/4224
Commas: 676/675, 1001/1000, 1716/1715, 4225/4224


[[POTE tuning|POTE generator]]: ~15/13 = 248.917
[[POTE_tuning|POTE generator]]: ~15/13 = 248.917


Map: [&lt;10 0 47 36 98 37|, &lt;0 2 -3 -1 -8 0|]
Map: [&lt;10 0 47 36 98 37|, &lt;0 2 -3 -1 -8 0|]
EDOs: 130, 270, 940, 1480
EDOs: 130, 270, 940, 1480
Badness: 0.0135
Badness: 0.0135


==Avicenna==  
==Avicenna==
Commas: 676/675, 1001/1000, 3025/3024, 4096/4095
Commas: 676/675, 1001/1000, 3025/3024, 4096/4095


[[POTE tuning|POTE generator]]: ~13/12 = 137.777
[[POTE_tuning|POTE generator]]: ~13/12 = 137.777


Map: [&lt;3 2 8 16 9 8|, &lt;0 8 -3 -22 4 9|]
Map: [&lt;3 2 8 16 9 8|, &lt;0 8 -3 -22 4 9|]
EDOs: 87, 183, 270
EDOs: 87, 183, 270
Badness: 0.0156
Badness: 0.0156


=Subgroup temperaments=  
=Subgroup temperaments=


==Barbados==  
==Barbados==
Subgroup: 2.3.13/5
Subgroup: 2.3.13/5
Commas: 676/675
Commas: 676/675


Perhaps the simplest method of making use of the barbados triad and other characteristic island harmonies is to strip things down to essentials by tempering the 2.3.13/5 [[Just intonation subgroups|just intontation subgroup]]. The minimax tuning for this makes the generator 2/sqrt(3), or 249.0225 cents. EDOs which may be used for it are [[24edo]], [[29edo]], [[53edo]] and [[111edo]], with MOS of size 5, 9, 14, 19, 24 and 29 making for a good variety of scales.
Perhaps the simplest method of making use of the barbados triad and other characteristic island harmonies is to strip things down to essentials by tempering the 2.3.13/5 [[Just_intonation_subgroups|just intontation subgroup]]. The minimax tuning for this makes the generator 2/sqrt(3), or 249.0225 cents. EDOs which may be used for it are [[24edo|24edo]], [[29edo|29edo]], [[53edo|53edo]] and [[111edo|111edo]], with MOS of size 5, 9, 14, 19, 24 and 29 making for a good variety of scales.
 
[[POTE_tuning|POTE generator]]: ~15/13 = 248.621


[[POTE tuning|POTE generator]]: ~15/13 = 248.621
[[Smonzos_and_Svals|Sval map]]: [&lt;1 0 -1|, &lt;0 2 3|]


[[Smonzos and Svals|Sval map]]: [&lt;1 0 -1|, &lt;0 2 3|]
EDOs: 5, 9, 14, 19, 24, 29, 53, 82, 111, 140, 251, 362
EDOs: 5, 9, 14, 19, 24, 29, 53, 82, 111, 140, 251, 362
Badness: 0.002335
Badness: 0.002335


===Music===  
===Music===
[[http://micro.soonlabel.com/gene_ward_smith/Others/Sevish/Sevish%20-%20Desert%20Island%20Rain.mp3|Desert Island Rain]] in 313et tuned Barbados[9], by [[https://soundcloud.com/sevish/desert-island-rain|Sevish]]
[http://micro.soonlabel.com/gene_ward_smith/Others/Sevish/Sevish%20-%20Desert%20Island%20Rain.mp3 Desert Island Rain] in 313et tuned Barbados[9], by [https://soundcloud.com/sevish/desert-island-rain Sevish]


==Trinidad==  
==Trinidad==
Subgroup: 2.3.5.13
Subgroup: 2.3.5.13
Commas: 325/324, 625/624
Commas: 325/324, 625/624


Trinidad may be viewed as the reduction of [[Kleismic family|catakleismic temperament]] to the 2.3.5.13 subgroup. Another way to put it is that it is the rank two 2.3.5.13 subgroup temperament tempering out 325/324, 625/624 and hence also 676/675.
Trinidad may be viewed as the reduction of [[Kleismic_family|catakleismic temperament]] to the 2.3.5.13 subgroup. Another way to put it is that it is the rank two 2.3.5.13 subgroup temperament tempering out 325/324, 625/624 and hence also 676/675.
 
[[POTE_tuning|POTE generator]]: 317.076


[[POTE tuning|POTE generator]]: 317.076
[[Smonzos_and_Svals|Sval map]]: [&lt;1 0 1 0 |, &lt;0 6 5 14|]


[[Smonzos and Svals|Sval map]]: [&lt;1 0 1 0 |, &lt;0 6 5 14|]
EDOs: 15, 19, 34, 53, 87, 140, 193, 246
EDOs: 15, 19, 34, 53, 87, 140, 193, 246


==[[Chromatic pairs#Tobago|Tobago]]==  
==[[Chromatic_pairs#Tobago|Tobago]]==


==Parizekmic==  
==Parizekmic==
Subgroup: 2.3.5.13
Subgroup: 2.3.5.13
Commas: 676/675
Commas: 676/675


Closely related to barbados temperament is parizekmic, the rank three 2.3.5.13 subgroup temperament tempering out 676/675. This is generated by 2, 5, and 15/13, where the minimax tuning makes 2 and 5 pure, and 15/13 sharp by sqrt(676/675), or 1.28145 cents. This is, in other words, the same sqrt(4/3) generator as the minimax tuning for barbados, and it gives parizekmic a just 5-limit, with barbados triads where the 13/10 is a cent flat.
Closely related to barbados temperament is parizekmic, the rank three 2.3.5.13 subgroup temperament tempering out 676/675. This is generated by 2, 5, and 15/13, where the minimax tuning makes 2 and 5 pure, and 15/13 sharp by sqrt(676/675), or 1.28145 cents. This is, in other words, the same sqrt(4/3) generator as the minimax tuning for barbados, and it gives parizekmic a just 5-limit, with barbados triads where the 13/10 is a cent flat.


[[Smonzos and Svals|Sval map]]
[[Smonzos_and_Svals|Sval map]]
 
&lt;1 0 0 -1|
&lt;1 0 0 -1|
&lt;0 2 0 3|
&lt;0 2 0 3|
&lt;0 0 1 1|
&lt;0 0 1 1|


===Music===  
===Music===
[[http://micro.soonlabel.com/petr_parizek/pp_pump_675.mp3|Petr's Pump]], a comma pump based ditty in Parizekmic temperament.
[http://micro.soonlabel.com/petr_parizek/pp_pump_675.mp3 Petr's Pump], a comma pump based ditty in Parizekmic temperament.
EDOs: 5, 9, 10, 15, 19, 34, 53, 130, 140, 164, 183, 217, 270</pre></div>
 
<h4>Original HTML content:</h4>
EDOs: 5, 9, 10, 15, 19, 34, 53, 130, 140, 164, 183, 217, 270
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;The Archipelago&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:54:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:54 --&gt;&lt;!-- ws:start:WikiTextTocRule:55: --&gt;&lt;a href="#Parent Temperaments"&gt;Parent Temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:55 --&gt;&lt;!-- ws:start:WikiTextTocRule:56: --&gt; | &lt;a href="#Island"&gt;Island&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:56 --&gt;&lt;!-- ws:start:WikiTextTocRule:57: --&gt;&lt;!-- ws:end:WikiTextTocRule:57 --&gt;&lt;!-- ws:start:WikiTextTocRule:58: --&gt; | &lt;a href="#Rank four temperaments"&gt;Rank four temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:58 --&gt;&lt;!-- ws:start:WikiTextTocRule:59: --&gt;&lt;!-- ws:end:WikiTextTocRule:59 --&gt;&lt;!-- ws:start:WikiTextTocRule:60: --&gt;&lt;!-- ws:end:WikiTextTocRule:60 --&gt;&lt;!-- ws:start:WikiTextTocRule:61: --&gt;&lt;!-- ws:end:WikiTextTocRule:61 --&gt;&lt;!-- ws:start:WikiTextTocRule:62: --&gt;&lt;!-- ws:end:WikiTextTocRule:62 --&gt;&lt;!-- ws:start:WikiTextTocRule:63: --&gt;&lt;!-- ws:end:WikiTextTocRule:63 --&gt;&lt;!-- ws:start:WikiTextTocRule:64: --&gt; | &lt;a href="#Rank three temperaments"&gt;Rank three temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:64 --&gt;&lt;!-- ws:start:WikiTextTocRule:65: --&gt;&lt;!-- ws:end:WikiTextTocRule:65 --&gt;&lt;!-- ws:start:WikiTextTocRule:66: --&gt;&lt;!-- ws:end:WikiTextTocRule:66 --&gt;&lt;!-- ws:start:WikiTextTocRule:67: --&gt;&lt;!-- ws:end:WikiTextTocRule:67 --&gt;&lt;!-- ws:start:WikiTextTocRule:68: --&gt;&lt;!-- ws:end:WikiTextTocRule:68 --&gt;&lt;!-- ws:start:WikiTextTocRule:69: --&gt;&lt;!-- ws:end:WikiTextTocRule:69 --&gt;&lt;!-- ws:start:WikiTextTocRule:70: --&gt;&lt;!-- ws:end:WikiTextTocRule:70 --&gt;&lt;!-- ws:start:WikiTextTocRule:71: --&gt;&lt;!-- ws:end:WikiTextTocRule:71 --&gt;&lt;!-- ws:start:WikiTextTocRule:72: --&gt; | &lt;a href="#Rank two temperaments"&gt;Rank two temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:72 --&gt;&lt;!-- ws:start:WikiTextTocRule:73: --&gt;&lt;!-- ws:end:WikiTextTocRule:73 --&gt;&lt;!-- ws:start:WikiTextTocRule:74: --&gt;&lt;!-- ws:end:WikiTextTocRule:74 --&gt;&lt;!-- ws:start:WikiTextTocRule:75: --&gt; | &lt;a href="#Subgroup temperaments"&gt;Subgroup temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:75 --&gt;&lt;!-- ws:start:WikiTextTocRule:76: --&gt;&lt;!-- ws:end:WikiTextTocRule:76 --&gt;&lt;!-- ws:start:WikiTextTocRule:77: --&gt;&lt;!-- ws:end:WikiTextTocRule:77 --&gt;&lt;!-- ws:start:WikiTextTocRule:78: --&gt;&lt;!-- ws:end:WikiTextTocRule:78 --&gt;&lt;!-- ws:start:WikiTextTocRule:79: --&gt;&lt;!-- ws:end:WikiTextTocRule:79 --&gt;&lt;!-- ws:start:WikiTextTocRule:80: --&gt;&lt;!-- ws:end:WikiTextTocRule:80 --&gt;&lt;!-- ws:start:WikiTextTocRule:81: --&gt;&lt;!-- ws:end:WikiTextTocRule:81 --&gt;&lt;!-- ws:start:WikiTextTocRule:82: --&gt;
[[Category:archipelago]]
&lt;!-- ws:end:WikiTextTocRule:82 --&gt;The archipelago is a rag-tag collection of various regular temperaments of different ranks, including subgroup temperaments, associated with island temperament: the rank five thirteen limit temperament tempering out the island comma, 676/675. Common to all of them is the observation that two intervals of 15/13 are equated with a fourth. Hence a 1-15/13-4/3 chord is a characteristic island chord, and 15/13 tends to be of low complexity. Also characteristic is the barbados triad, the 1-13/10-3/2 triad, as well as its inversion 1-15/13-3/2, the barbados tetrad, 1-13/10-3/2-26/15, plus the tetrads 1-13/10-3/2-8/5 and 1-13/10-3/2-9/5. The &lt;a class="wiki_link" href="/Just%20intonation%20subgroups"&gt;just intonation subgroup&lt;/a&gt; generated by 2, 4/3 and 15/13 is 2.3.13/5, and the barbados triad and tetrad are found in that, while the other two tetrads are found in the larger 2.3.5.13 subgroup.&lt;br /&gt;
[[Category:listen]]
&lt;br /&gt;
[[Category:overview]]
The barbados triad is of particular theoretical interest because, when reduced to lowest terms, it is the 10:13:15 triad. Thus, this triad is only slightly higher in complexity than the 5-limit 10:12:15 minor triad, which means it may be of distinct value as a relatively unexplored musical consonance. It is one of only a few low-complexity triads with a 3/2 on the outer dyad, some others being 4:5:6, 6:7:9, and 10:12:15. It works out to 0-454-702 cents, which means that it is an &lt;em&gt;ultramajor&lt;/em&gt; triad, with a third sharper even than the 9/7 supermajor third.&lt;br /&gt;
[[Category:temperaments]]
&lt;br /&gt;
[[Category:theory]]
Compared to the 7-limit 14:18:21 supermajor triad, 10:13:15 is lower in triadic complexity (10:13:15 vs 14:18:21), but contains dyads that are on average higher in complexity (9/7 vs 13/10 and 7/6 vs 15/13). Its inverse, however, is the ultraminor 26:30:39, which is far more complex than the 7-limit subminor 6:7:9. Temperaments in which 91/90 vanishes equate the two types of triads.&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/24edo"&gt;24edo&lt;/a&gt; approximates this triad to within an error of four cents, and &lt;a class="wiki_link" href="/29edo"&gt;29edo&lt;/a&gt; does even better, getting it to within 1.5 cents; either may be used as a tuning for the barbados temperament discussed below.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Parent Temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Parent Temperaments&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Island"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Island&lt;/h1&gt;
Comma: 676/675&lt;br /&gt;
&lt;br /&gt;
Map:&lt;br /&gt;
&amp;lt;1 0 0 0 0 -1|&lt;br /&gt;
&amp;lt;0 2 0 0 0 3|&lt;br /&gt;
&amp;lt;0 0 1 0 0 1|&lt;br /&gt;
&amp;lt;0 0 0 1 0 0|&lt;br /&gt;
&amp;lt;0 0 0 0 1 0|&lt;br /&gt;
EDOs: 5, 9, 10, 15, 19, 24, 29, 43, 53, 58, 72, 87, 111, 121, 130, 183, 940&lt;br /&gt;
&lt;a class="wiki_link" href="/Optimal%20patent%20val"&gt;Optimal patent val&lt;/a&gt;: &lt;a class="wiki_link" href="/940edo"&gt;940edo&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="Island-Barbados"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;&lt;!-- ws:start:WikiTextAnchorRule:83:&amp;lt;img src=&amp;quot;/i/anchor.gif&amp;quot; class=&amp;quot;WikiAnchor&amp;quot; alt=&amp;quot;Anchor&amp;quot; id=&amp;quot;wikitext@@anchor@@Subgroup temperaments-Barbados&amp;quot; title=&amp;quot;Anchor: Subgroup temperaments-Barbados&amp;quot;/&amp;gt; --&gt;&lt;a name="Subgroup temperaments-Barbados"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextAnchorRule:83 --&gt;Barbados&lt;/h2&gt;
Subgroup: 2.3.13/5&lt;br /&gt;
Commas: 676/675&lt;br /&gt;
&lt;br /&gt;
Perhaps the simplest method of making use of the barbados triad and other characteristic island harmonies is to strip things down to essentials by tempering the 2.3.13/5 &lt;a class="wiki_link" href="/Just%20intonation%20subgroups"&gt;just intontation subgroup&lt;/a&gt;. The minimax tuning for this makes the generator 2/sqrt(3), or 249.0225 cents. EDOs which may be used for it are &lt;a class="wiki_link" href="/24edo"&gt;24edo&lt;/a&gt;, &lt;a class="wiki_link" href="/29edo"&gt;29edo&lt;/a&gt;, &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt; and &lt;a class="wiki_link" href="/111edo"&gt;111edo&lt;/a&gt;, with MOS of size 5, 9, 14, 19, 24 and 29 making for a good variety of scales.&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~15/13 = 248.621&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Smonzos%20and%20Svals"&gt;Sval map&lt;/a&gt;: [&amp;lt;1 0 -1|, &amp;lt;0 2 3|]&lt;br /&gt;
EDOs: 5, 9, 14, 19, 24, 29, 53, 82, 111, 140, 251, 362&lt;br /&gt;
Badness: 0.002335&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Rank four temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Rank four temperaments&lt;/h1&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="Rank four temperaments-1001/1000"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;1001/1000&lt;/h2&gt;
Commas: 676/675, 1001/1000&lt;br /&gt;
&lt;br /&gt;
EDOs: 15, 19, 29, 43, 53, 58, 72, 87, 111, 130, 183, 198, 270, 940&lt;br /&gt;
&lt;a class="wiki_link" href="/Optimal%20patent%20val"&gt;Optimal patent val&lt;/a&gt;: &lt;a class="wiki_link" href="/940edo"&gt;940edo&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="Rank four temperaments-49/48"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;49/48&lt;/h2&gt;
Commas: 49/48, 91/90&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="Rank four temperaments-1716/1715"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;1716/1715&lt;/h2&gt;
Commas: 676/675, 1716/1715&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc7"&gt;&lt;a name="Rank four temperaments-364/363"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;364/363&lt;/h2&gt;
Commas: 364/363, 676/675&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc8"&gt;&lt;a name="Rank four temperaments-364/363-351/350"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;351/350&lt;/h3&gt;
Commas: 351/350, 676/675&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc9"&gt;&lt;a name="Rank three temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;Rank three temperaments&lt;/h1&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc10"&gt;&lt;a name="Rank three temperaments-Greenland"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;&lt;a class="wiki_link" href="/Breed%20family"&gt;Greenland&lt;/a&gt;&lt;/h2&gt;
Commas: 676/675, 1001/1000, 1716/1715&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;2 0 1 3 7 -1|, &amp;lt;0 2 1 1 -2 4|, &amp;lt;0 0 2 1 3 2|]&lt;br /&gt;
Edos: 58, 72, 130, 198, 270, 940&lt;br /&gt;
&lt;a class="wiki_link" href="/Optimal%20patent%20val"&gt;Optimal patent val&lt;/a&gt;: &lt;a class="wiki_link" href="/940edo"&gt;940edo&lt;/a&gt;&lt;br /&gt;
Badness: 0.000433&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Spectrum%20of%20a%20temperament"&gt;Spectrum&lt;/a&gt;: 15/13, 7/5, 8/7, 7/6, 4/3, 15/14, 5/4, 18/13, 13/12, 14/13, 13/10, 6/5, 16/15, 11/10, 9/7, 9/8, 16/13, 10/9, 14/11, 11/8, 15/11, 12/11, 13/11, 11/9&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc11"&gt;&lt;a name="Rank three temperaments-History"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;&lt;a class="wiki_link" href="/Werckismic%20temperaments"&gt;History&lt;/a&gt;&lt;/h2&gt;
Commas: 364/363, 441/440, 1001/1000&lt;br /&gt;
&lt;br /&gt;
EDOs: 15, 29, 43, 58, 72, 87, 130, 217, 289&lt;br /&gt;
&lt;a class="wiki_link" href="/Optimal%20patent%20val"&gt;Optimal patent val&lt;/a&gt;: &lt;a class="wiki_link" href="/289edo"&gt;289edo&lt;/a&gt;&lt;br /&gt;
Badness: 0.000540&lt;br /&gt;
&lt;br /&gt;
Spectrum: 11/10, 15/13, 14/11, 4/3, 7/5, 5/4, 11/8, 18/13, 15/11, 13/12, 13/10, 6/5, 8/7, 16/15, 12/11, 13/11, 9/8, 16/13, 15/14, 10/9, 7/6, 11/9, 14/13, 9/7&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:24:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc12"&gt;&lt;a name="Rank three temperaments-Borneo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:24 --&gt;Borneo&lt;/h2&gt;
Commas: 676/675, 1001/1000, 3025/3024&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;3 0 0 4 8 -3|, &amp;lt;0 2 0 -4 1 3|, &amp;lt;0 0 1 2 0 1|]&lt;br /&gt;
EDOs: 15, 72, 87, 111, 159, 183, 198, 270&lt;br /&gt;
&lt;a class="wiki_link" href="/Optimal%20patent%20val"&gt;Optimal patent val&lt;/a&gt;: &lt;a class="wiki_link" href="/270edo"&gt;270edo&lt;/a&gt;&lt;br /&gt;
Badness: 0.000549&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Spectrum: 12/11, 15/13, 11/8, 4/3, 11/10, 18/13, 6/5, 5/4, 13/12, 15/11, 11/9, 13/10, 10/9, 7/5, 16/15, 13/11, 9/8, 16/13, 8/7, 14/11, 15/14, 7/6, 14/13, 9/7&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:26:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc13"&gt;&lt;a name="Rank three temperaments-Sumatra"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:26 --&gt;Sumatra&lt;/h2&gt;
Commas: 325/324, 385/384, 625/624&lt;br /&gt;
&lt;br /&gt;
EDOs: 15, 19, 34, 53, 72, 87, 140, 159, 212, 299&lt;br /&gt;
Optimal patent val: &lt;a class="wiki_link" href="/299edo"&gt;299edo&lt;/a&gt;&lt;br /&gt;
Badness: 0.000680&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:28:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc14"&gt;&lt;a name="Rank three temperaments-Madagascar"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:28 --&gt;&lt;a class="wiki_link" href="/Cataharry%20family"&gt;Madagascar&lt;/a&gt;&lt;/h2&gt;
Commas: 351/350, 540/539, 676/675&lt;br /&gt;
&lt;br /&gt;
EDOs: 19, 53, 58, 72, 111, 130, 183, 313&lt;br /&gt;
&lt;a class="wiki_link" href="/Optimal%20patent%20val"&gt;Optimal patent val&lt;/a&gt;: &lt;a class="wiki_link" href="/313edo"&gt;313edo&lt;/a&gt;&lt;br /&gt;
Badness: 0.000560&lt;br /&gt;
&lt;br /&gt;
Spectrum: 15/13, 4/3, 13/10, 10/9, 6/5, 9/7, 18/13, 9/8, 5/4, 7/6, 13/12, 15/14, 16/15, 14/13, 8/7, 7/5, 16/13, 11/10, 15/11, 11/8, 12/11, 13/11, 11/9, 14/11&lt;br /&gt;
&lt;a class="wiki_link" href="/madagascar19"&gt;madagascar19&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:30:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc15"&gt;&lt;a name="Rank three temperaments-Baffin"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:30 --&gt;Baffin&lt;/h2&gt;
Commas: 676/675, 1001/1000, 4225/4224&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 0 0 13 -9 1|, &amp;lt;0 2 0 -7 4 3|, &amp;lt;0 0 1 -2 4 1|]&lt;br /&gt;
EDOs: 34, 43, 53, 87, 130, 183, 217, 270, 940&lt;br /&gt;
&lt;a class="wiki_link" href="/Optimal%20patent%20val"&gt;Optimal patent val&lt;/a&gt;: &lt;a class="wiki_link" href="/940edo"&gt;940edo&lt;/a&gt;&lt;br /&gt;
Badness: 0.000604&lt;br /&gt;
&lt;br /&gt;
Spectrum: 15/13, 16/15, 13/12, 4/3, 16/13, 5/4, 18/13, 13/10, 6/5, 9/8, 11/10, 8/7, 7/5, 15/11, 10/9, 13/11, 15/14, 11/8, 7/6, 14/13, 12/11, 9/7, 11/9, 14/11&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:32:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc16"&gt;&lt;a name="Rank three temperaments-Kujuku"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:32 --&gt;Kujuku&lt;/h2&gt;
Commas: 352/351, 364/363, 676/675&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 0 0 -13 -6 -1|, &amp;lt;0 2 0 17 9 3|, &amp;lt;0 0 1 1 1 1|]&lt;br /&gt;
EDOs: 24, 29, 58, 87, 121, 145, 208, 266ef, 474bef&lt;br /&gt;
&lt;a class="wiki_link" href="/Optimal%20patent%20val"&gt;Optimal patent val&lt;/a&gt;: &lt;a class="wiki_link" href="/208edo"&gt;208edo&lt;/a&gt;&lt;br /&gt;
Badness: 0.001060&lt;br /&gt;
&lt;br /&gt;
Spectrum: 15/13, 4/3, 13/10, 9/8, 13/11, 15/11, 12/11, 11/9, 11/8, 14/11, 16/13, 16/15, 11/10, 13/12, 9/7, 5/4, 18/13, 7/6, 6/5, 8/7, 10/9, 14/13, 15/14, 7/5&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:34:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc17"&gt;&lt;a name="Rank two temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:34 --&gt;Rank two temperaments&lt;/h1&gt;
Rank two temperaments tempering out 676/675 include the 13-limit versions of &lt;a class="wiki_link" href="/Ragismic%20microtemperaments"&gt;hemiennealimmal&lt;/a&gt;, &lt;a class="wiki_link" href="/Breedsmic%20temperaments"&gt;harry&lt;/a&gt;, &lt;a class="wiki_link" href="/Kleismic%20family"&gt;tritikleismic&lt;/a&gt;, &lt;a class="wiki_link" href="/Kleismic%20family"&gt;catakleimsic&lt;/a&gt;, &lt;a class="wiki_link" href="/Marvel%20temperaments"&gt;negri&lt;/a&gt;, &lt;a class="wiki_link" href="/Hemifamity%20temperaments"&gt;mystery&lt;/a&gt;, &lt;a class="wiki_link" href="/Hemifamity%20temperaments"&gt;buzzard&lt;/a&gt;, &lt;a class="wiki_link" href="/Kleismic%20family"&gt;quadritikleismic&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
It is interesting to note the Graham complexity of 15/13 in these temperaments. This is 18 in hemiennealimmal, 6 in harry, 9 in tritikleismic, 3 in catakleismic, 2 in negri, 2 in buzzard, 12 in quadritikleismic. Catakleismic and buzzard are particularly interesting from an archipelago point of view. Mystery is special case, since the 15/13 part of it belongs to &lt;a class="wiki_link" href="/29edo"&gt;29edo&lt;/a&gt; alone.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:36:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc18"&gt;&lt;a name="Rank two temperaments-Decitonic"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:36 --&gt;Decitonic&lt;/h2&gt;
Commas: 676/675, 1001/1000, 1716/1715, 4225/4224&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~15/13 = 248.917&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;10 0 47 36 98 37|, &amp;lt;0 2 -3 -1 -8 0|]&lt;br /&gt;
EDOs: 130, 270, 940, 1480&lt;br /&gt;
Badness: 0.0135&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:38:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc19"&gt;&lt;a name="Rank two temperaments-Avicenna"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:38 --&gt;Avicenna&lt;/h2&gt;
Commas: 676/675, 1001/1000, 3025/3024, 4096/4095&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~13/12 = 137.777&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;3 2 8 16 9 8|, &amp;lt;0 8 -3 -22 4 9|]&lt;br /&gt;
EDOs: 87, 183, 270&lt;br /&gt;
Badness: 0.0156&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:40:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc20"&gt;&lt;a name="Subgroup temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:40 --&gt;Subgroup temperaments&lt;/h1&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:42:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc21"&gt;&lt;a name="Subgroup temperaments-Barbados"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:42 --&gt;Barbados&lt;/h2&gt;
Subgroup: 2.3.13/5&lt;br /&gt;
Commas: 676/675&lt;br /&gt;
&lt;br /&gt;
Perhaps the simplest method of making use of the barbados triad and other characteristic island harmonies is to strip things down to essentials by tempering the 2.3.13/5 &lt;a class="wiki_link" href="/Just%20intonation%20subgroups"&gt;just intontation subgroup&lt;/a&gt;. The minimax tuning for this makes the generator 2/sqrt(3), or 249.0225 cents. EDOs which may be used for it are &lt;a class="wiki_link" href="/24edo"&gt;24edo&lt;/a&gt;, &lt;a class="wiki_link" href="/29edo"&gt;29edo&lt;/a&gt;, &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt; and &lt;a class="wiki_link" href="/111edo"&gt;111edo&lt;/a&gt;, with MOS of size 5, 9, 14, 19, 24 and 29 making for a good variety of scales.&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~15/13 = 248.621&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Smonzos%20and%20Svals"&gt;Sval map&lt;/a&gt;: [&amp;lt;1 0 -1|, &amp;lt;0 2 3|]&lt;br /&gt;
EDOs: 5, 9, 14, 19, 24, 29, 53, 82, 111, 140, 251, 362&lt;br /&gt;
Badness: 0.002335&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:44:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc22"&gt;&lt;a name="Subgroup temperaments-Barbados-Music"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:44 --&gt;Music&lt;/h3&gt;
&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Sevish/Sevish%20-%20Desert%20Island%20Rain.mp3" rel="nofollow"&gt;Desert Island Rain&lt;/a&gt; in 313et tuned Barbados[9], by &lt;a class="wiki_link_ext" href="https://soundcloud.com/sevish/desert-island-rain" rel="nofollow"&gt;Sevish&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:46:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc23"&gt;&lt;a name="Subgroup temperaments-Trinidad"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:46 --&gt;Trinidad&lt;/h2&gt;
Subgroup: 2.3.5.13&lt;br /&gt;
Commas: 325/324, 625/624&lt;br /&gt;
&lt;br /&gt;
Trinidad may be viewed as the reduction of &lt;a class="wiki_link" href="/Kleismic%20family"&gt;catakleismic temperament&lt;/a&gt; to the 2.3.5.13 subgroup. Another way to put it is that it is the rank two 2.3.5.13 subgroup temperament tempering out 325/324, 625/624 and hence also 676/675.&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 317.076&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Smonzos%20and%20Svals"&gt;Sval map&lt;/a&gt;: [&amp;lt;1 0 1 0 |, &amp;lt;0 6 5 14|]&lt;br /&gt;
EDOs: 15, 19, 34, 53, 87, 140, 193, 246&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:48:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc24"&gt;&lt;a name="Subgroup temperaments-Tobago"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:48 --&gt;&lt;a class="wiki_link" href="/Chromatic%20pairs#Tobago"&gt;Tobago&lt;/a&gt;&lt;/h2&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:50:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc25"&gt;&lt;a name="Subgroup temperaments-Parizekmic"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:50 --&gt;Parizekmic&lt;/h2&gt;
Subgroup: 2.3.5.13&lt;br /&gt;
Commas: 676/675&lt;br /&gt;
&lt;br /&gt;
Closely related to barbados temperament is parizekmic, the rank three 2.3.5.13 subgroup temperament tempering out 676/675. This is generated by 2, 5, and 15/13, where the minimax tuning makes 2 and 5 pure, and 15/13 sharp by sqrt(676/675), or 1.28145 cents. This is, in other words, the same sqrt(4/3) generator as the minimax tuning for barbados, and it gives parizekmic a just 5-limit, with barbados triads where the 13/10 is a cent flat.&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Smonzos%20and%20Svals"&gt;Sval map&lt;/a&gt;&lt;br /&gt;
&amp;lt;1 0 0 -1|&lt;br /&gt;
&amp;lt;0 2 0 3|&lt;br /&gt;
&amp;lt;0 0 1 1|&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:52:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc26"&gt;&lt;a name="Subgroup temperaments-Parizekmic-Music"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:52 --&gt;Music&lt;/h3&gt;
&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/petr_parizek/pp_pump_675.mp3" rel="nofollow"&gt;Petr's Pump&lt;/a&gt;, a comma pump based ditty in Parizekmic temperament.&lt;br /&gt;
EDOs: 5, 9, 10, 15, 19, 34, 53, 130, 140, 164, 183, 217, 270&lt;/body&gt;&lt;/html&gt;</pre></div>