|
|
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | __FORCETOC__ |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | The archipelago is a rag-tag collection of various regular temperaments of different ranks, including subgroup temperaments, associated with island temperament: the rank five thirteen limit temperament tempering out the island comma, 676/675. Common to all of them is the observation that two intervals of 15/13 are equated with a fourth. Hence a 1-15/13-4/3 chord is a characteristic island chord, and 15/13 tends to be of low complexity. Also characteristic is the barbados triad, the 1-13/10-3/2 triad, as well as its inversion 1-15/13-3/2, the barbados tetrad, 1-13/10-3/2-26/15, plus the tetrads 1-13/10-3/2-8/5 and 1-13/10-3/2-9/5. The [[Just_intonation_subgroups|just intonation subgroup]] generated by 2, 4/3 and 15/13 is 2.3.13/5, and the barbados triad and tetrad are found in that, while the other two tetrads are found in the larger 2.3.5.13 subgroup. |
| : This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2018-07-12 03:06:08 UTC</tt>.<br>
| |
| : The original revision id was <tt>630873021</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
| |
| The archipelago is a rag-tag collection of various regular temperaments of different ranks, including subgroup temperaments, associated with island temperament: the rank five thirteen limit temperament tempering out the island comma, 676/675. Common to all of them is the observation that two intervals of 15/13 are equated with a fourth. Hence a 1-15/13-4/3 chord is a characteristic island chord, and 15/13 tends to be of low complexity. Also characteristic is the barbados triad, the 1-13/10-3/2 triad, as well as its inversion 1-15/13-3/2, the barbados tetrad, 1-13/10-3/2-26/15, plus the tetrads 1-13/10-3/2-8/5 and 1-13/10-3/2-9/5. The [[Just intonation subgroups|just intonation subgroup]] generated by 2, 4/3 and 15/13 is 2.3.13/5, and the barbados triad and tetrad are found in that, while the other two tetrads are found in the larger 2.3.5.13 subgroup. | |
|
| |
|
| The barbados triad is of particular theoretical interest because, when reduced to lowest terms, it is the 10:13:15 triad. Thus, this triad is only slightly higher in complexity than the 5-limit 10:12:15 minor triad, which means it may be of distinct value as a relatively unexplored musical consonance. It is one of only a few low-complexity triads with a 3/2 on the outer dyad, some others being 4:5:6, 6:7:9, and 10:12:15. It works out to 0-454-702 cents, which means that it is an //ultramajor// triad, with a third sharper even than the 9/7 supermajor third. | | The barbados triad is of particular theoretical interest because, when reduced to lowest terms, it is the 10:13:15 triad. Thus, this triad is only slightly higher in complexity than the 5-limit 10:12:15 minor triad, which means it may be of distinct value as a relatively unexplored musical consonance. It is one of only a few low-complexity triads with a 3/2 on the outer dyad, some others being 4:5:6, 6:7:9, and 10:12:15. It works out to 0-454-702 cents, which means that it is an ''ultramajor'' triad, with a third sharper even than the 9/7 supermajor third. |
|
| |
|
| Compared to the 7-limit 14:18:21 supermajor triad, 10:13:15 is lower in triadic complexity (10:13:15 vs 14:18:21), but contains dyads that are on average higher in complexity (9/7 vs 13/10 and 7/6 vs 15/13). Its inverse, however, is the ultraminor 26:30:39, which is far more complex than the 7-limit subminor 6:7:9. Temperaments in which 91/90 vanishes equate the two types of triads. | | Compared to the 7-limit 14:18:21 supermajor triad, 10:13:15 is lower in triadic complexity (10:13:15 vs 14:18:21), but contains dyads that are on average higher in complexity (9/7 vs 13/10 and 7/6 vs 15/13). Its inverse, however, is the ultraminor 26:30:39, which is far more complex than the 7-limit subminor 6:7:9. Temperaments in which 91/90 vanishes equate the two types of triads. |
|
| |
|
| [[24edo]] approximates this triad to within an error of four cents, and [[29edo]] does even better, getting it to within 1.5 cents; either may be used as a tuning for the barbados temperament discussed below. | | [[24edo|24edo]] approximates this triad to within an error of four cents, and [[29edo|29edo]] does even better, getting it to within 1.5 cents; either may be used as a tuning for the barbados temperament discussed below. |
|
| |
|
| =Parent Temperaments= | | =Parent Temperaments= |
| =Island= | | |
| | =Island= |
| Comma: 676/675 | | Comma: 676/675 |
|
| |
|
| Map: | | Map: |
| | |
| <1 0 0 0 0 -1| | | <1 0 0 0 0 -1| |
| | |
| <0 2 0 0 0 3| | | <0 2 0 0 0 3| |
| | |
| <0 0 1 0 0 1| | | <0 0 1 0 0 1| |
| | |
| <0 0 0 1 0 0| | | <0 0 0 1 0 0| |
| | |
| <0 0 0 0 1 0| | | <0 0 0 0 1 0| |
| | |
| EDOs: 5, 9, 10, 15, 19, 24, 29, 43, 53, 58, 72, 87, 111, 121, 130, 183, 940 | | EDOs: 5, 9, 10, 15, 19, 24, 29, 43, 53, 58, 72, 87, 111, 121, 130, 183, 940 |
| [[Optimal patent val]]: [[940edo]]
| |
|
| |
|
| ==[[#Subgroup temperaments-Barbados]]Barbados==
| | [[Optimal_patent_val|Optimal patent val]]: [[940edo|940edo]] |
| | |
| | ==Barbados== |
| Subgroup: 2.3.13/5 | | Subgroup: 2.3.13/5 |
| | |
| Commas: 676/675 | | Commas: 676/675 |
|
| |
|
| Perhaps the simplest method of making use of the barbados triad and other characteristic island harmonies is to strip things down to essentials by tempering the 2.3.13/5 [[Just intonation subgroups|just intontation subgroup]]. The minimax tuning for this makes the generator 2/sqrt(3), or 249.0225 cents. EDOs which may be used for it are [[24edo]], [[29edo]], [[53edo]] and [[111edo]], with MOS of size 5, 9, 14, 19, 24 and 29 making for a good variety of scales. | | Perhaps the simplest method of making use of the barbados triad and other characteristic island harmonies is to strip things down to essentials by tempering the 2.3.13/5 [[Just_intonation_subgroups|just intontation subgroup]]. The minimax tuning for this makes the generator 2/sqrt(3), or 249.0225 cents. EDOs which may be used for it are [[24edo|24edo]], [[29edo|29edo]], [[53edo|53edo]] and [[111edo|111edo]], with MOS of size 5, 9, 14, 19, 24 and 29 making for a good variety of scales. |
| | |
| | [[POTE_tuning|POTE generator]]: ~15/13 = 248.621 |
|
| |
|
| [[POTE tuning|POTE generator]]: ~15/13 = 248.621 | | [[Smonzos_and_Svals|Sval map]]: [<1 0 -1|, <0 2 3|] |
|
| |
|
| [[Smonzos and Svals|Sval map]]: [<1 0 -1|, <0 2 3|]
| |
| EDOs: 5, 9, 14, 19, 24, 29, 53, 82, 111, 140, 251, 362 | | EDOs: 5, 9, 14, 19, 24, 29, 53, 82, 111, 140, 251, 362 |
| | |
| Badness: 0.002335 | | Badness: 0.002335 |
|
| |
|
| | =Rank four temperaments= |
|
| |
|
| =Rank four temperaments=
| | ==1001/1000== |
| | |
| ==1001/1000== | |
| Commas: 676/675, 1001/1000 | | Commas: 676/675, 1001/1000 |
|
| |
|
| EDOs: 15, 19, 29, 43, 53, 58, 72, 87, 111, 130, 183, 198, 270, 940 | | EDOs: 15, 19, 29, 43, 53, 58, 72, 87, 111, 130, 183, 198, 270, 940 |
| [[Optimal patent val]]: [[940edo]]
| |
|
| |
|
| ==49/48== | | [[Optimal_patent_val|Optimal patent val]]: [[940edo|940edo]] |
| | |
| | ==49/48== |
| Commas: 49/48, 91/90 | | Commas: 49/48, 91/90 |
|
| |
|
| ==1716/1715== | | ==1716/1715== |
| Commas: 676/675, 1716/1715 | | Commas: 676/675, 1716/1715 |
|
| |
|
| ==364/363== | | ==364/363== |
| Commas: 364/363, 676/675 | | Commas: 364/363, 676/675 |
|
| |
|
| ===351/350=== | | ===351/350=== |
| Commas: 351/350, 676/675 | | Commas: 351/350, 676/675 |
|
| |
|
| =Rank three temperaments= | | =Rank three temperaments= |
|
| |
|
| ==[[Breed family|Greenland]]== | | ==[[Breed_family|Greenland]]== |
| Commas: 676/675, 1001/1000, 1716/1715 | | Commas: 676/675, 1001/1000, 1716/1715 |
|
| |
|
| Map: [<2 0 1 3 7 -1|, <0 2 1 1 -2 4|, <0 0 2 1 3 2|] | | Map: [<2 0 1 3 7 -1|, <0 2 1 1 -2 4|, <0 0 2 1 3 2|] |
| | |
| Edos: 58, 72, 130, 198, 270, 940 | | Edos: 58, 72, 130, 198, 270, 940 |
| [[Optimal patent val]]: [[940edo]] | | |
| | [[Optimal_patent_val|Optimal patent val]]: [[940edo|940edo]] |
| | |
| Badness: 0.000433 | | Badness: 0.000433 |
|
| |
|
| [[Spectrum of a temperament|Spectrum]]: 15/13, 7/5, 8/7, 7/6, 4/3, 15/14, 5/4, 18/13, 13/12, 14/13, 13/10, 6/5, 16/15, 11/10, 9/7, 9/8, 16/13, 10/9, 14/11, 11/8, 15/11, 12/11, 13/11, 11/9 | | [[Spectrum_of_a_temperament|Spectrum]]: 15/13, 7/5, 8/7, 7/6, 4/3, 15/14, 5/4, 18/13, 13/12, 14/13, 13/10, 6/5, 16/15, 11/10, 9/7, 9/8, 16/13, 10/9, 14/11, 11/8, 15/11, 12/11, 13/11, 11/9 |
|
| |
|
| | | ==[[Werckismic_temperaments|History]]== |
| ==[[Werckismic temperaments|History]]== | |
| Commas: 364/363, 441/440, 1001/1000 | | Commas: 364/363, 441/440, 1001/1000 |
|
| |
|
| EDOs: 15, 29, 43, 58, 72, 87, 130, 217, 289 | | EDOs: 15, 29, 43, 58, 72, 87, 130, 217, 289 |
| [[Optimal patent val]]: [[289edo]] | | |
| | [[Optimal_patent_val|Optimal patent val]]: [[289edo|289edo]] |
| | |
| Badness: 0.000540 | | Badness: 0.000540 |
|
| |
|
| Spectrum: 11/10, 15/13, 14/11, 4/3, 7/5, 5/4, 11/8, 18/13, 15/11, 13/12, 13/10, 6/5, 8/7, 16/15, 12/11, 13/11, 9/8, 16/13, 15/14, 10/9, 7/6, 11/9, 14/13, 9/7 | | Spectrum: 11/10, 15/13, 14/11, 4/3, 7/5, 5/4, 11/8, 18/13, 15/11, 13/12, 13/10, 6/5, 8/7, 16/15, 12/11, 13/11, 9/8, 16/13, 15/14, 10/9, 7/6, 11/9, 14/13, 9/7 |
|
| |
|
| ==Borneo== | | ==Borneo== |
| Commas: 676/675, 1001/1000, 3025/3024 | | Commas: 676/675, 1001/1000, 3025/3024 |
|
| |
|
| Map: [<3 0 0 4 8 -3|, <0 2 0 -4 1 3|, <0 0 1 2 0 1|] | | Map: [<3 0 0 4 8 -3|, <0 2 0 -4 1 3|, <0 0 1 2 0 1|] |
| | |
| EDOs: 15, 72, 87, 111, 159, 183, 198, 270 | | EDOs: 15, 72, 87, 111, 159, 183, 198, 270 |
| [[Optimal patent val]]: [[270edo]] | | |
| | [[Optimal_patent_val|Optimal patent val]]: [[270edo|270edo]] |
| | |
| Badness: 0.000549 | | Badness: 0.000549 |
|
| |
|
| |
|
| Spectrum: 12/11, 15/13, 11/8, 4/3, 11/10, 18/13, 6/5, 5/4, 13/12, 15/11, 11/9, 13/10, 10/9, 7/5, 16/15, 13/11, 9/8, 16/13, 8/7, 14/11, 15/14, 7/6, 14/13, 9/7 | | Spectrum: 12/11, 15/13, 11/8, 4/3, 11/10, 18/13, 6/5, 5/4, 13/12, 15/11, 11/9, 13/10, 10/9, 7/5, 16/15, 13/11, 9/8, 16/13, 8/7, 14/11, 15/14, 7/6, 14/13, 9/7 |
|
| |
|
| ==Sumatra== | | ==Sumatra== |
| Commas: 325/324, 385/384, 625/624 | | Commas: 325/324, 385/384, 625/624 |
|
| |
|
| EDOs: 15, 19, 34, 53, 72, 87, 140, 159, 212, 299 | | EDOs: 15, 19, 34, 53, 72, 87, 140, 159, 212, 299 |
| Optimal patent val: [[299edo]] | | |
| | Optimal patent val: [[299edo|299edo]] |
| | |
| Badness: 0.000680 | | Badness: 0.000680 |
|
| |
|
| ==[[Cataharry family|Madagascar]]== | | ==[[Cataharry_family|Madagascar]]== |
| Commas: 351/350, 540/539, 676/675 | | Commas: 351/350, 540/539, 676/675 |
|
| |
|
| EDOs: 19, 53, 58, 72, 111, 130, 183, 313 | | EDOs: 19, 53, 58, 72, 111, 130, 183, 313 |
| [[Optimal patent val]]: [[313edo]] | | |
| | [[Optimal_patent_val|Optimal patent val]]: [[313edo|313edo]] |
| | |
| Badness: 0.000560 | | Badness: 0.000560 |
|
| |
|
| Spectrum: 15/13, 4/3, 13/10, 10/9, 6/5, 9/7, 18/13, 9/8, 5/4, 7/6, 13/12, 15/14, 16/15, 14/13, 8/7, 7/5, 16/13, 11/10, 15/11, 11/8, 12/11, 13/11, 11/9, 14/11 | | Spectrum: 15/13, 4/3, 13/10, 10/9, 6/5, 9/7, 18/13, 9/8, 5/4, 7/6, 13/12, 15/14, 16/15, 14/13, 8/7, 7/5, 16/13, 11/10, 15/11, 11/8, 12/11, 13/11, 11/9, 14/11 |
| [[madagascar19]]
| |
|
| |
|
| ==Baffin== | | [[madagascar19|madagascar19]] |
| | |
| | ==Baffin== |
| Commas: 676/675, 1001/1000, 4225/4224 | | Commas: 676/675, 1001/1000, 4225/4224 |
|
| |
|
| Map: [<1 0 0 13 -9 1|, <0 2 0 -7 4 3|, <0 0 1 -2 4 1|] | | Map: [<1 0 0 13 -9 1|, <0 2 0 -7 4 3|, <0 0 1 -2 4 1|] |
| | |
| EDOs: 34, 43, 53, 87, 130, 183, 217, 270, 940 | | EDOs: 34, 43, 53, 87, 130, 183, 217, 270, 940 |
| [[Optimal patent val]]: [[940edo]] | | |
| | [[Optimal_patent_val|Optimal patent val]]: [[940edo|940edo]] |
| | |
| Badness: 0.000604 | | Badness: 0.000604 |
|
| |
|
| Spectrum: 15/13, 16/15, 13/12, 4/3, 16/13, 5/4, 18/13, 13/10, 6/5, 9/8, 11/10, 8/7, 7/5, 15/11, 10/9, 13/11, 15/14, 11/8, 7/6, 14/13, 12/11, 9/7, 11/9, 14/11 | | Spectrum: 15/13, 16/15, 13/12, 4/3, 16/13, 5/4, 18/13, 13/10, 6/5, 9/8, 11/10, 8/7, 7/5, 15/11, 10/9, 13/11, 15/14, 11/8, 7/6, 14/13, 12/11, 9/7, 11/9, 14/11 |
|
| |
|
| ==Kujuku== | | ==Kujuku== |
| Commas: 352/351, 364/363, 676/675 | | Commas: 352/351, 364/363, 676/675 |
|
| |
|
| Map: [<1 0 0 -13 -6 -1|, <0 2 0 17 9 3|, <0 0 1 1 1 1|] | | Map: [<1 0 0 -13 -6 -1|, <0 2 0 17 9 3|, <0 0 1 1 1 1|] |
| | |
| EDOs: 24, 29, 58, 87, 121, 145, 208, 266ef, 474bef | | EDOs: 24, 29, 58, 87, 121, 145, 208, 266ef, 474bef |
| [[Optimal patent val]]: [[208edo]] | | |
| | [[Optimal_patent_val|Optimal patent val]]: [[208edo|208edo]] |
| | |
| Badness: 0.001060 | | Badness: 0.001060 |
|
| |
|
| Spectrum: 15/13, 4/3, 13/10, 9/8, 13/11, 15/11, 12/11, 11/9, 11/8, 14/11, 16/13, 16/15, 11/10, 13/12, 9/7, 5/4, 18/13, 7/6, 6/5, 8/7, 10/9, 14/13, 15/14, 7/5 | | Spectrum: 15/13, 4/3, 13/10, 9/8, 13/11, 15/11, 12/11, 11/9, 11/8, 14/11, 16/13, 16/15, 11/10, 13/12, 9/7, 5/4, 18/13, 7/6, 6/5, 8/7, 10/9, 14/13, 15/14, 7/5 |
|
| |
|
| =Rank two temperaments= | | =Rank two temperaments= |
| Rank two temperaments tempering out 676/675 include the 13-limit versions of [[Ragismic microtemperaments|hemiennealimmal]], [[Breedsmic temperaments|harry]], [[Kleismic family|tritikleismic]], [[Kleismic family|catakleimsic]], [[Marvel temperaments|negri]], [[Hemifamity temperaments|mystery]], [[Hemifamity temperaments|buzzard]], [[Kleismic family|quadritikleismic]]. | | Rank two temperaments tempering out 676/675 include the 13-limit versions of [[Ragismic_microtemperaments|hemiennealimmal]], [[Breedsmic_temperaments|harry]], [[Kleismic_family|tritikleismic]], [[Kleismic_family|catakleimsic]], [[Marvel_temperaments|negri]], [[Hemifamity_temperaments|mystery]], [[Hemifamity_temperaments|buzzard]], [[Kleismic_family|quadritikleismic]]. |
|
| |
|
| It is interesting to note the Graham complexity of 15/13 in these temperaments. This is 18 in hemiennealimmal, 6 in harry, 9 in tritikleismic, 3 in catakleismic, 2 in negri, 2 in buzzard, 12 in quadritikleismic. Catakleismic and buzzard are particularly interesting from an archipelago point of view. Mystery is special case, since the 15/13 part of it belongs to [[29edo]] alone. | | It is interesting to note the Graham complexity of 15/13 in these temperaments. This is 18 in hemiennealimmal, 6 in harry, 9 in tritikleismic, 3 in catakleismic, 2 in negri, 2 in buzzard, 12 in quadritikleismic. Catakleismic and buzzard are particularly interesting from an archipelago point of view. Mystery is special case, since the 15/13 part of it belongs to [[29edo|29edo]] alone. |
|
| |
|
| ==Decitonic== | | ==Decitonic== |
| Commas: 676/675, 1001/1000, 1716/1715, 4225/4224 | | Commas: 676/675, 1001/1000, 1716/1715, 4225/4224 |
|
| |
|
| [[POTE tuning|POTE generator]]: ~15/13 = 248.917 | | [[POTE_tuning|POTE generator]]: ~15/13 = 248.917 |
|
| |
|
| Map: [<10 0 47 36 98 37|, <0 2 -3 -1 -8 0|] | | Map: [<10 0 47 36 98 37|, <0 2 -3 -1 -8 0|] |
| | |
| EDOs: 130, 270, 940, 1480 | | EDOs: 130, 270, 940, 1480 |
| | |
| Badness: 0.0135 | | Badness: 0.0135 |
|
| |
|
| ==Avicenna== | | ==Avicenna== |
| Commas: 676/675, 1001/1000, 3025/3024, 4096/4095 | | Commas: 676/675, 1001/1000, 3025/3024, 4096/4095 |
|
| |
|
| [[POTE tuning|POTE generator]]: ~13/12 = 137.777 | | [[POTE_tuning|POTE generator]]: ~13/12 = 137.777 |
|
| |
|
| Map: [<3 2 8 16 9 8|, <0 8 -3 -22 4 9|] | | Map: [<3 2 8 16 9 8|, <0 8 -3 -22 4 9|] |
| | |
| EDOs: 87, 183, 270 | | EDOs: 87, 183, 270 |
| | |
| Badness: 0.0156 | | Badness: 0.0156 |
|
| |
|
| =Subgroup temperaments= | | =Subgroup temperaments= |
|
| |
|
| ==Barbados== | | ==Barbados== |
| Subgroup: 2.3.13/5 | | Subgroup: 2.3.13/5 |
| | |
| Commas: 676/675 | | Commas: 676/675 |
|
| |
|
| Perhaps the simplest method of making use of the barbados triad and other characteristic island harmonies is to strip things down to essentials by tempering the 2.3.13/5 [[Just intonation subgroups|just intontation subgroup]]. The minimax tuning for this makes the generator 2/sqrt(3), or 249.0225 cents. EDOs which may be used for it are [[24edo]], [[29edo]], [[53edo]] and [[111edo]], with MOS of size 5, 9, 14, 19, 24 and 29 making for a good variety of scales. | | Perhaps the simplest method of making use of the barbados triad and other characteristic island harmonies is to strip things down to essentials by tempering the 2.3.13/5 [[Just_intonation_subgroups|just intontation subgroup]]. The minimax tuning for this makes the generator 2/sqrt(3), or 249.0225 cents. EDOs which may be used for it are [[24edo|24edo]], [[29edo|29edo]], [[53edo|53edo]] and [[111edo|111edo]], with MOS of size 5, 9, 14, 19, 24 and 29 making for a good variety of scales. |
| | |
| | [[POTE_tuning|POTE generator]]: ~15/13 = 248.621 |
|
| |
|
| [[POTE tuning|POTE generator]]: ~15/13 = 248.621 | | [[Smonzos_and_Svals|Sval map]]: [<1 0 -1|, <0 2 3|] |
|
| |
|
| [[Smonzos and Svals|Sval map]]: [<1 0 -1|, <0 2 3|]
| |
| EDOs: 5, 9, 14, 19, 24, 29, 53, 82, 111, 140, 251, 362 | | EDOs: 5, 9, 14, 19, 24, 29, 53, 82, 111, 140, 251, 362 |
| | |
| Badness: 0.002335 | | Badness: 0.002335 |
|
| |
|
| ===Music=== | | ===Music=== |
| [[http://micro.soonlabel.com/gene_ward_smith/Others/Sevish/Sevish%20-%20Desert%20Island%20Rain.mp3|Desert Island Rain]] in 313et tuned Barbados[9], by [[https://soundcloud.com/sevish/desert-island-rain|Sevish]]
| | [http://micro.soonlabel.com/gene_ward_smith/Others/Sevish/Sevish%20-%20Desert%20Island%20Rain.mp3 Desert Island Rain] in 313et tuned Barbados[9], by [https://soundcloud.com/sevish/desert-island-rain Sevish] |
|
| |
|
| ==Trinidad== | | ==Trinidad== |
| Subgroup: 2.3.5.13 | | Subgroup: 2.3.5.13 |
| | |
| Commas: 325/324, 625/624 | | Commas: 325/324, 625/624 |
|
| |
|
| Trinidad may be viewed as the reduction of [[Kleismic family|catakleismic temperament]] to the 2.3.5.13 subgroup. Another way to put it is that it is the rank two 2.3.5.13 subgroup temperament tempering out 325/324, 625/624 and hence also 676/675. | | Trinidad may be viewed as the reduction of [[Kleismic_family|catakleismic temperament]] to the 2.3.5.13 subgroup. Another way to put it is that it is the rank two 2.3.5.13 subgroup temperament tempering out 325/324, 625/624 and hence also 676/675. |
| | |
| | [[POTE_tuning|POTE generator]]: 317.076 |
|
| |
|
| [[POTE tuning|POTE generator]]: 317.076 | | [[Smonzos_and_Svals|Sval map]]: [<1 0 1 0 |, <0 6 5 14|] |
|
| |
|
| [[Smonzos and Svals|Sval map]]: [<1 0 1 0 |, <0 6 5 14|]
| |
| EDOs: 15, 19, 34, 53, 87, 140, 193, 246 | | EDOs: 15, 19, 34, 53, 87, 140, 193, 246 |
|
| |
|
| ==[[Chromatic pairs#Tobago|Tobago]]== | | ==[[Chromatic_pairs#Tobago|Tobago]]== |
|
| |
|
| ==Parizekmic== | | ==Parizekmic== |
| Subgroup: 2.3.5.13 | | Subgroup: 2.3.5.13 |
| | |
| Commas: 676/675 | | Commas: 676/675 |
|
| |
|
| Closely related to barbados temperament is parizekmic, the rank three 2.3.5.13 subgroup temperament tempering out 676/675. This is generated by 2, 5, and 15/13, where the minimax tuning makes 2 and 5 pure, and 15/13 sharp by sqrt(676/675), or 1.28145 cents. This is, in other words, the same sqrt(4/3) generator as the minimax tuning for barbados, and it gives parizekmic a just 5-limit, with barbados triads where the 13/10 is a cent flat. | | Closely related to barbados temperament is parizekmic, the rank three 2.3.5.13 subgroup temperament tempering out 676/675. This is generated by 2, 5, and 15/13, where the minimax tuning makes 2 and 5 pure, and 15/13 sharp by sqrt(676/675), or 1.28145 cents. This is, in other words, the same sqrt(4/3) generator as the minimax tuning for barbados, and it gives parizekmic a just 5-limit, with barbados triads where the 13/10 is a cent flat. |
|
| |
|
| [[Smonzos and Svals|Sval map]] | | [[Smonzos_and_Svals|Sval map]] |
| | |
| <1 0 0 -1| | | <1 0 0 -1| |
| | |
| <0 2 0 3| | | <0 2 0 3| |
| | |
| <0 0 1 1| | | <0 0 1 1| |
|
| |
|
| ===Music=== | | ===Music=== |
| [[http://micro.soonlabel.com/petr_parizek/pp_pump_675.mp3|Petr's Pump]], a comma pump based ditty in Parizekmic temperament.
| | [http://micro.soonlabel.com/petr_parizek/pp_pump_675.mp3 Petr's Pump], a comma pump based ditty in Parizekmic temperament. |
| EDOs: 5, 9, 10, 15, 19, 34, 53, 130, 140, 164, 183, 217, 270</pre></div> | | |
| <h4>Original HTML content:</h4>
| | EDOs: 5, 9, 10, 15, 19, 34, 53, 130, 140, 164, 183, 217, 270 |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>The Archipelago</title></head><body><!-- ws:start:WikiTextTocRule:54:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:54 --><!-- ws:start:WikiTextTocRule:55: --><a href="#Parent Temperaments">Parent Temperaments</a><!-- ws:end:WikiTextTocRule:55 --><!-- ws:start:WikiTextTocRule:56: --> | <a href="#Island">Island</a><!-- ws:end:WikiTextTocRule:56 --><!-- ws:start:WikiTextTocRule:57: --><!-- ws:end:WikiTextTocRule:57 --><!-- ws:start:WikiTextTocRule:58: --> | <a href="#Rank four temperaments">Rank four temperaments</a><!-- ws:end:WikiTextTocRule:58 --><!-- ws:start:WikiTextTocRule:59: --><!-- ws:end:WikiTextTocRule:59 --><!-- ws:start:WikiTextTocRule:60: --><!-- ws:end:WikiTextTocRule:60 --><!-- ws:start:WikiTextTocRule:61: --><!-- ws:end:WikiTextTocRule:61 --><!-- ws:start:WikiTextTocRule:62: --><!-- ws:end:WikiTextTocRule:62 --><!-- ws:start:WikiTextTocRule:63: --><!-- ws:end:WikiTextTocRule:63 --><!-- ws:start:WikiTextTocRule:64: --> | <a href="#Rank three temperaments">Rank three temperaments</a><!-- ws:end:WikiTextTocRule:64 --><!-- ws:start:WikiTextTocRule:65: --><!-- ws:end:WikiTextTocRule:65 --><!-- ws:start:WikiTextTocRule:66: --><!-- ws:end:WikiTextTocRule:66 --><!-- ws:start:WikiTextTocRule:67: --><!-- ws:end:WikiTextTocRule:67 --><!-- ws:start:WikiTextTocRule:68: --><!-- ws:end:WikiTextTocRule:68 --><!-- ws:start:WikiTextTocRule:69: --><!-- ws:end:WikiTextTocRule:69 --><!-- ws:start:WikiTextTocRule:70: --><!-- ws:end:WikiTextTocRule:70 --><!-- ws:start:WikiTextTocRule:71: --><!-- ws:end:WikiTextTocRule:71 --><!-- ws:start:WikiTextTocRule:72: --> | <a href="#Rank two temperaments">Rank two temperaments</a><!-- ws:end:WikiTextTocRule:72 --><!-- ws:start:WikiTextTocRule:73: --><!-- ws:end:WikiTextTocRule:73 --><!-- ws:start:WikiTextTocRule:74: --><!-- ws:end:WikiTextTocRule:74 --><!-- ws:start:WikiTextTocRule:75: --> | <a href="#Subgroup temperaments">Subgroup temperaments</a><!-- ws:end:WikiTextTocRule:75 --><!-- ws:start:WikiTextTocRule:76: --><!-- ws:end:WikiTextTocRule:76 --><!-- ws:start:WikiTextTocRule:77: --><!-- ws:end:WikiTextTocRule:77 --><!-- ws:start:WikiTextTocRule:78: --><!-- ws:end:WikiTextTocRule:78 --><!-- ws:start:WikiTextTocRule:79: --><!-- ws:end:WikiTextTocRule:79 --><!-- ws:start:WikiTextTocRule:80: --><!-- ws:end:WikiTextTocRule:80 --><!-- ws:start:WikiTextTocRule:81: --><!-- ws:end:WikiTextTocRule:81 --><!-- ws:start:WikiTextTocRule:82: -->
| | [[Category:archipelago]] |
| <!-- ws:end:WikiTextTocRule:82 -->The archipelago is a rag-tag collection of various regular temperaments of different ranks, including subgroup temperaments, associated with island temperament: the rank five thirteen limit temperament tempering out the island comma, 676/675. Common to all of them is the observation that two intervals of 15/13 are equated with a fourth. Hence a 1-15/13-4/3 chord is a characteristic island chord, and 15/13 tends to be of low complexity. Also characteristic is the barbados triad, the 1-13/10-3/2 triad, as well as its inversion 1-15/13-3/2, the barbados tetrad, 1-13/10-3/2-26/15, plus the tetrads 1-13/10-3/2-8/5 and 1-13/10-3/2-9/5. The <a class="wiki_link" href="/Just%20intonation%20subgroups">just intonation subgroup</a> generated by 2, 4/3 and 15/13 is 2.3.13/5, and the barbados triad and tetrad are found in that, while the other two tetrads are found in the larger 2.3.5.13 subgroup.<br />
| | [[Category:listen]] |
| <br />
| | [[Category:overview]] |
| The barbados triad is of particular theoretical interest because, when reduced to lowest terms, it is the 10:13:15 triad. Thus, this triad is only slightly higher in complexity than the 5-limit 10:12:15 minor triad, which means it may be of distinct value as a relatively unexplored musical consonance. It is one of only a few low-complexity triads with a 3/2 on the outer dyad, some others being 4:5:6, 6:7:9, and 10:12:15. It works out to 0-454-702 cents, which means that it is an <em>ultramajor</em> triad, with a third sharper even than the 9/7 supermajor third.<br />
| | [[Category:temperaments]] |
| <br />
| | [[Category:theory]] |
| Compared to the 7-limit 14:18:21 supermajor triad, 10:13:15 is lower in triadic complexity (10:13:15 vs 14:18:21), but contains dyads that are on average higher in complexity (9/7 vs 13/10 and 7/6 vs 15/13). Its inverse, however, is the ultraminor 26:30:39, which is far more complex than the 7-limit subminor 6:7:9. Temperaments in which 91/90 vanishes equate the two types of triads.<br />
| |
| <br />
| |
| <a class="wiki_link" href="/24edo">24edo</a> approximates this triad to within an error of four cents, and <a class="wiki_link" href="/29edo">29edo</a> does even better, getting it to within 1.5 cents; either may be used as a tuning for the barbados temperament discussed below.<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Parent Temperaments"></a><!-- ws:end:WikiTextHeadingRule:0 -->Parent Temperaments</h1>
| |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Island"></a><!-- ws:end:WikiTextHeadingRule:2 -->Island</h1>
| |
| Comma: 676/675<br />
| |
| <br />
| |
| Map:<br />
| |
| &lt;1 0 0 0 0 -1|<br />
| |
| &lt;0 2 0 0 0 3|<br />
| |
| &lt;0 0 1 0 0 1|<br />
| |
| &lt;0 0 0 1 0 0|<br />
| |
| &lt;0 0 0 0 1 0|<br />
| |
| EDOs: 5, 9, 10, 15, 19, 24, 29, 43, 53, 58, 72, 87, 111, 121, 130, 183, 940<br />
| |
| <a class="wiki_link" href="/Optimal%20patent%20val">Optimal patent val</a>: <a class="wiki_link" href="/940edo">940edo</a><br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="Island-Barbados"></a><!-- ws:end:WikiTextHeadingRule:4 --><!-- ws:start:WikiTextAnchorRule:83:&lt;img src=&quot;/i/anchor.gif&quot; class=&quot;WikiAnchor&quot; alt=&quot;Anchor&quot; id=&quot;wikitext@@anchor@@Subgroup temperaments-Barbados&quot; title=&quot;Anchor: Subgroup temperaments-Barbados&quot;/&gt; --><a name="Subgroup temperaments-Barbados"></a><!-- ws:end:WikiTextAnchorRule:83 -->Barbados</h2>
| |
| Subgroup: 2.3.13/5<br />
| |
| Commas: 676/675<br />
| |
| <br />
| |
| Perhaps the simplest method of making use of the barbados triad and other characteristic island harmonies is to strip things down to essentials by tempering the 2.3.13/5 <a class="wiki_link" href="/Just%20intonation%20subgroups">just intontation subgroup</a>. The minimax tuning for this makes the generator 2/sqrt(3), or 249.0225 cents. EDOs which may be used for it are <a class="wiki_link" href="/24edo">24edo</a>, <a class="wiki_link" href="/29edo">29edo</a>, <a class="wiki_link" href="/53edo">53edo</a> and <a class="wiki_link" href="/111edo">111edo</a>, with MOS of size 5, 9, 14, 19, 24 and 29 making for a good variety of scales.<br />
| |
| <br />
| |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~15/13 = 248.621<br />
| |
| <br />
| |
| <a class="wiki_link" href="/Smonzos%20and%20Svals">Sval map</a>: [&lt;1 0 -1|, &lt;0 2 3|]<br />
| |
| EDOs: 5, 9, 14, 19, 24, 29, 53, 82, 111, 140, 251, 362<br />
| |
| Badness: 0.002335<br />
| |
| <br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Rank four temperaments"></a><!-- ws:end:WikiTextHeadingRule:6 -->Rank four temperaments</h1>
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:8:&lt;h2&gt; --><h2 id="toc4"><a name="Rank four temperaments-1001/1000"></a><!-- ws:end:WikiTextHeadingRule:8 -->1001/1000</h2>
| |
| Commas: 676/675, 1001/1000<br />
| |
| <br />
| |
| EDOs: 15, 19, 29, 43, 53, 58, 72, 87, 111, 130, 183, 198, 270, 940<br />
| |
| <a class="wiki_link" href="/Optimal%20patent%20val">Optimal patent val</a>: <a class="wiki_link" href="/940edo">940edo</a><br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:10:&lt;h2&gt; --><h2 id="toc5"><a name="Rank four temperaments-49/48"></a><!-- ws:end:WikiTextHeadingRule:10 -->49/48</h2>
| |
| Commas: 49/48, 91/90<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:12:&lt;h2&gt; --><h2 id="toc6"><a name="Rank four temperaments-1716/1715"></a><!-- ws:end:WikiTextHeadingRule:12 -->1716/1715</h2>
| |
| Commas: 676/675, 1716/1715<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:14:&lt;h2&gt; --><h2 id="toc7"><a name="Rank four temperaments-364/363"></a><!-- ws:end:WikiTextHeadingRule:14 -->364/363</h2>
| |
| Commas: 364/363, 676/675<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:16:&lt;h3&gt; --><h3 id="toc8"><a name="Rank four temperaments-364/363-351/350"></a><!-- ws:end:WikiTextHeadingRule:16 -->351/350</h3>
| |
| Commas: 351/350, 676/675<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:18:&lt;h1&gt; --><h1 id="toc9"><a name="Rank three temperaments"></a><!-- ws:end:WikiTextHeadingRule:18 -->Rank three temperaments</h1>
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:20:&lt;h2&gt; --><h2 id="toc10"><a name="Rank three temperaments-Greenland"></a><!-- ws:end:WikiTextHeadingRule:20 --><a class="wiki_link" href="/Breed%20family">Greenland</a></h2>
| |
| Commas: 676/675, 1001/1000, 1716/1715<br />
| |
| <br />
| |
| Map: [&lt;2 0 1 3 7 -1|, &lt;0 2 1 1 -2 4|, &lt;0 0 2 1 3 2|]<br />
| |
| Edos: 58, 72, 130, 198, 270, 940<br />
| |
| <a class="wiki_link" href="/Optimal%20patent%20val">Optimal patent val</a>: <a class="wiki_link" href="/940edo">940edo</a><br />
| |
| Badness: 0.000433<br />
| |
| <br />
| |
| <a class="wiki_link" href="/Spectrum%20of%20a%20temperament">Spectrum</a>: 15/13, 7/5, 8/7, 7/6, 4/3, 15/14, 5/4, 18/13, 13/12, 14/13, 13/10, 6/5, 16/15, 11/10, 9/7, 9/8, 16/13, 10/9, 14/11, 11/8, 15/11, 12/11, 13/11, 11/9<br />
| |
| <br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:22:&lt;h2&gt; --><h2 id="toc11"><a name="Rank three temperaments-History"></a><!-- ws:end:WikiTextHeadingRule:22 --><a class="wiki_link" href="/Werckismic%20temperaments">History</a></h2>
| |
| Commas: 364/363, 441/440, 1001/1000<br />
| |
| <br />
| |
| EDOs: 15, 29, 43, 58, 72, 87, 130, 217, 289<br />
| |
| <a class="wiki_link" href="/Optimal%20patent%20val">Optimal patent val</a>: <a class="wiki_link" href="/289edo">289edo</a><br />
| |
| Badness: 0.000540<br />
| |
| <br />
| |
| Spectrum: 11/10, 15/13, 14/11, 4/3, 7/5, 5/4, 11/8, 18/13, 15/11, 13/12, 13/10, 6/5, 8/7, 16/15, 12/11, 13/11, 9/8, 16/13, 15/14, 10/9, 7/6, 11/9, 14/13, 9/7<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:24:&lt;h2&gt; --><h2 id="toc12"><a name="Rank three temperaments-Borneo"></a><!-- ws:end:WikiTextHeadingRule:24 -->Borneo</h2>
| |
| Commas: 676/675, 1001/1000, 3025/3024<br />
| |
| <br />
| |
| Map: [&lt;3 0 0 4 8 -3|, &lt;0 2 0 -4 1 3|, &lt;0 0 1 2 0 1|]<br />
| |
| EDOs: 15, 72, 87, 111, 159, 183, 198, 270<br />
| |
| <a class="wiki_link" href="/Optimal%20patent%20val">Optimal patent val</a>: <a class="wiki_link" href="/270edo">270edo</a><br />
| |
| Badness: 0.000549<br />
| |
| <br />
| |
| <br />
| |
| Spectrum: 12/11, 15/13, 11/8, 4/3, 11/10, 18/13, 6/5, 5/4, 13/12, 15/11, 11/9, 13/10, 10/9, 7/5, 16/15, 13/11, 9/8, 16/13, 8/7, 14/11, 15/14, 7/6, 14/13, 9/7<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:26:&lt;h2&gt; --><h2 id="toc13"><a name="Rank three temperaments-Sumatra"></a><!-- ws:end:WikiTextHeadingRule:26 -->Sumatra</h2>
| |
| Commas: 325/324, 385/384, 625/624<br />
| |
| <br />
| |
| EDOs: 15, 19, 34, 53, 72, 87, 140, 159, 212, 299<br />
| |
| Optimal patent val: <a class="wiki_link" href="/299edo">299edo</a><br />
| |
| Badness: 0.000680<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:28:&lt;h2&gt; --><h2 id="toc14"><a name="Rank three temperaments-Madagascar"></a><!-- ws:end:WikiTextHeadingRule:28 --><a class="wiki_link" href="/Cataharry%20family">Madagascar</a></h2>
| |
| Commas: 351/350, 540/539, 676/675<br />
| |
| <br />
| |
| EDOs: 19, 53, 58, 72, 111, 130, 183, 313<br />
| |
| <a class="wiki_link" href="/Optimal%20patent%20val">Optimal patent val</a>: <a class="wiki_link" href="/313edo">313edo</a><br />
| |
| Badness: 0.000560<br />
| |
| <br />
| |
| Spectrum: 15/13, 4/3, 13/10, 10/9, 6/5, 9/7, 18/13, 9/8, 5/4, 7/6, 13/12, 15/14, 16/15, 14/13, 8/7, 7/5, 16/13, 11/10, 15/11, 11/8, 12/11, 13/11, 11/9, 14/11<br />
| |
| <a class="wiki_link" href="/madagascar19">madagascar19</a><br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:30:&lt;h2&gt; --><h2 id="toc15"><a name="Rank three temperaments-Baffin"></a><!-- ws:end:WikiTextHeadingRule:30 -->Baffin</h2>
| |
| Commas: 676/675, 1001/1000, 4225/4224<br />
| |
| <br />
| |
| Map: [&lt;1 0 0 13 -9 1|, &lt;0 2 0 -7 4 3|, &lt;0 0 1 -2 4 1|]<br />
| |
| EDOs: 34, 43, 53, 87, 130, 183, 217, 270, 940<br />
| |
| <a class="wiki_link" href="/Optimal%20patent%20val">Optimal patent val</a>: <a class="wiki_link" href="/940edo">940edo</a><br />
| |
| Badness: 0.000604<br />
| |
| <br />
| |
| Spectrum: 15/13, 16/15, 13/12, 4/3, 16/13, 5/4, 18/13, 13/10, 6/5, 9/8, 11/10, 8/7, 7/5, 15/11, 10/9, 13/11, 15/14, 11/8, 7/6, 14/13, 12/11, 9/7, 11/9, 14/11<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:32:&lt;h2&gt; --><h2 id="toc16"><a name="Rank three temperaments-Kujuku"></a><!-- ws:end:WikiTextHeadingRule:32 -->Kujuku</h2>
| |
| Commas: 352/351, 364/363, 676/675<br />
| |
| <br />
| |
| Map: [&lt;1 0 0 -13 -6 -1|, &lt;0 2 0 17 9 3|, &lt;0 0 1 1 1 1|]<br />
| |
| EDOs: 24, 29, 58, 87, 121, 145, 208, 266ef, 474bef<br />
| |
| <a class="wiki_link" href="/Optimal%20patent%20val">Optimal patent val</a>: <a class="wiki_link" href="/208edo">208edo</a><br />
| |
| Badness: 0.001060<br />
| |
| <br />
| |
| Spectrum: 15/13, 4/3, 13/10, 9/8, 13/11, 15/11, 12/11, 11/9, 11/8, 14/11, 16/13, 16/15, 11/10, 13/12, 9/7, 5/4, 18/13, 7/6, 6/5, 8/7, 10/9, 14/13, 15/14, 7/5<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:34:&lt;h1&gt; --><h1 id="toc17"><a name="Rank two temperaments"></a><!-- ws:end:WikiTextHeadingRule:34 -->Rank two temperaments</h1>
| |
| Rank two temperaments tempering out 676/675 include the 13-limit versions of <a class="wiki_link" href="/Ragismic%20microtemperaments">hemiennealimmal</a>, <a class="wiki_link" href="/Breedsmic%20temperaments">harry</a>, <a class="wiki_link" href="/Kleismic%20family">tritikleismic</a>, <a class="wiki_link" href="/Kleismic%20family">catakleimsic</a>, <a class="wiki_link" href="/Marvel%20temperaments">negri</a>, <a class="wiki_link" href="/Hemifamity%20temperaments">mystery</a>, <a class="wiki_link" href="/Hemifamity%20temperaments">buzzard</a>, <a class="wiki_link" href="/Kleismic%20family">quadritikleismic</a>.<br />
| |
| <br />
| |
| It is interesting to note the Graham complexity of 15/13 in these temperaments. This is 18 in hemiennealimmal, 6 in harry, 9 in tritikleismic, 3 in catakleismic, 2 in negri, 2 in buzzard, 12 in quadritikleismic. Catakleismic and buzzard are particularly interesting from an archipelago point of view. Mystery is special case, since the 15/13 part of it belongs to <a class="wiki_link" href="/29edo">29edo</a> alone.<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:36:&lt;h2&gt; --><h2 id="toc18"><a name="Rank two temperaments-Decitonic"></a><!-- ws:end:WikiTextHeadingRule:36 -->Decitonic</h2>
| |
| Commas: 676/675, 1001/1000, 1716/1715, 4225/4224<br />
| |
| <br />
| |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~15/13 = 248.917<br />
| |
| <br />
| |
| Map: [&lt;10 0 47 36 98 37|, &lt;0 2 -3 -1 -8 0|]<br />
| |
| EDOs: 130, 270, 940, 1480<br />
| |
| Badness: 0.0135<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:38:&lt;h2&gt; --><h2 id="toc19"><a name="Rank two temperaments-Avicenna"></a><!-- ws:end:WikiTextHeadingRule:38 -->Avicenna</h2>
| |
| Commas: 676/675, 1001/1000, 3025/3024, 4096/4095<br />
| |
| <br />
| |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~13/12 = 137.777<br />
| |
| <br />
| |
| Map: [&lt;3 2 8 16 9 8|, &lt;0 8 -3 -22 4 9|]<br />
| |
| EDOs: 87, 183, 270<br />
| |
| Badness: 0.0156<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:40:&lt;h1&gt; --><h1 id="toc20"><a name="Subgroup temperaments"></a><!-- ws:end:WikiTextHeadingRule:40 -->Subgroup temperaments</h1>
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:42:&lt;h2&gt; --><h2 id="toc21"><a name="Subgroup temperaments-Barbados"></a><!-- ws:end:WikiTextHeadingRule:42 -->Barbados</h2>
| |
| Subgroup: 2.3.13/5<br />
| |
| Commas: 676/675<br />
| |
| <br />
| |
| Perhaps the simplest method of making use of the barbados triad and other characteristic island harmonies is to strip things down to essentials by tempering the 2.3.13/5 <a class="wiki_link" href="/Just%20intonation%20subgroups">just intontation subgroup</a>. The minimax tuning for this makes the generator 2/sqrt(3), or 249.0225 cents. EDOs which may be used for it are <a class="wiki_link" href="/24edo">24edo</a>, <a class="wiki_link" href="/29edo">29edo</a>, <a class="wiki_link" href="/53edo">53edo</a> and <a class="wiki_link" href="/111edo">111edo</a>, with MOS of size 5, 9, 14, 19, 24 and 29 making for a good variety of scales.<br />
| |
| <br />
| |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~15/13 = 248.621<br />
| |
| <br />
| |
| <a class="wiki_link" href="/Smonzos%20and%20Svals">Sval map</a>: [&lt;1 0 -1|, &lt;0 2 3|]<br />
| |
| EDOs: 5, 9, 14, 19, 24, 29, 53, 82, 111, 140, 251, 362<br />
| |
| Badness: 0.002335<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:44:&lt;h3&gt; --><h3 id="toc22"><a name="Subgroup temperaments-Barbados-Music"></a><!-- ws:end:WikiTextHeadingRule:44 -->Music</h3>
| |
| <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Sevish/Sevish%20-%20Desert%20Island%20Rain.mp3" rel="nofollow">Desert Island Rain</a> in 313et tuned Barbados[9], by <a class="wiki_link_ext" href="https://soundcloud.com/sevish/desert-island-rain" rel="nofollow">Sevish</a><br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:46:&lt;h2&gt; --><h2 id="toc23"><a name="Subgroup temperaments-Trinidad"></a><!-- ws:end:WikiTextHeadingRule:46 -->Trinidad</h2>
| |
| Subgroup: 2.3.5.13<br />
| |
| Commas: 325/324, 625/624<br />
| |
| <br />
| |
| Trinidad may be viewed as the reduction of <a class="wiki_link" href="/Kleismic%20family">catakleismic temperament</a> to the 2.3.5.13 subgroup. Another way to put it is that it is the rank two 2.3.5.13 subgroup temperament tempering out 325/324, 625/624 and hence also 676/675.<br />
| |
| <br />
| |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 317.076<br />
| |
| <br />
| |
| <a class="wiki_link" href="/Smonzos%20and%20Svals">Sval map</a>: [&lt;1 0 1 0 |, &lt;0 6 5 14|]<br />
| |
| EDOs: 15, 19, 34, 53, 87, 140, 193, 246<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:48:&lt;h2&gt; --><h2 id="toc24"><a name="Subgroup temperaments-Tobago"></a><!-- ws:end:WikiTextHeadingRule:48 --><a class="wiki_link" href="/Chromatic%20pairs#Tobago">Tobago</a></h2>
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:50:&lt;h2&gt; --><h2 id="toc25"><a name="Subgroup temperaments-Parizekmic"></a><!-- ws:end:WikiTextHeadingRule:50 -->Parizekmic</h2>
| |
| Subgroup: 2.3.5.13<br />
| |
| Commas: 676/675<br />
| |
| <br />
| |
| Closely related to barbados temperament is parizekmic, the rank three 2.3.5.13 subgroup temperament tempering out 676/675. This is generated by 2, 5, and 15/13, where the minimax tuning makes 2 and 5 pure, and 15/13 sharp by sqrt(676/675), or 1.28145 cents. This is, in other words, the same sqrt(4/3) generator as the minimax tuning for barbados, and it gives parizekmic a just 5-limit, with barbados triads where the 13/10 is a cent flat.<br />
| |
| <br />
| |
| <a class="wiki_link" href="/Smonzos%20and%20Svals">Sval map</a><br />
| |
| &lt;1 0 0 -1|<br />
| |
| &lt;0 2 0 3|<br />
| |
| &lt;0 0 1 1|<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:52:&lt;h3&gt; --><h3 id="toc26"><a name="Subgroup temperaments-Parizekmic-Music"></a><!-- ws:end:WikiTextHeadingRule:52 -->Music</h3>
| |
| <a class="wiki_link_ext" href="http://micro.soonlabel.com/petr_parizek/pp_pump_675.mp3" rel="nofollow">Petr's Pump</a>, a comma pump based ditty in Parizekmic temperament.<br />
| |
| EDOs: 5, 9, 10, 15, 19, 34, 53, 130, 140, 164, 183, 217, 270</body></html></pre></div>
| |